scispace - formally typeset
Search or ask a question
JournalISSN: 0223-5234

European journal of medicinal chemistry 

Elsevier BV
About: European journal of medicinal chemistry is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Chemistry & Medicine. It has an ISSN identifier of 0223-5234. Over the lifetime, 1152 publications have been published receiving 3296 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a review of chemotherapeutic drugs and phytochemicals developed to overcome cisplatin-resistance ovarian cancer (CROC) were discussed, and the role of combination therapy in reversing DDP-resistant in OC and the significance of using a nanoparticle delivery system in this context.
Abstract: Ovarian cancer (OC) is one of the most common gynecologic tumors worldwide and one with the highest mortality. Cisplatin (DDP) is the first platinum-based complex approved by the Food and Drug Administration (FDA) to treat patients with OC. Despite a good initial response rate, most patients receiving DDP treatment will ultimately develop resistance via various complicated mechanisms, leading to therapeutic failure and increased mortality. Multiple resistance pathways have been identified as potentially key areas of intervention. In this review, chemotherapeutic drugs and phytochemicals developed to overcome cisplatin-resistance ovarian cancer (CROC) were discussed. Targeted inhibition or specific drugs are effective against the DDP-resistance phenotype by inhibiting resistance or increasing cytotoxic efficacy. Phytochemicals as chemosensitizers offer novel treatment strategies for CROC patients by reducing chemoresistance and increasing drug efficacy. Due to the complexity of the DDP-resistance mechanism, the treatment of OC needs to improve specificity and effectiveness, and multi-path cooperative therapy is undoubtedly one of the best options. We discuss extensively the role of combination therapy in reversing DDP-resistance in OC and the significance of using a nanoparticle delivery system in this context. Suggestions for potential therapeutic strategies for CROC treatment will help discover more effective and specific regimens to overcome DDP-resistance.

37 citations

Journal ArticleDOI
TL;DR: In this paper , unique coumarin conjugates with thiazolidinone as novel structural antibacterial modulators were exploited to combat the lethal multidrug-resistant bacterial infections.
Abstract: Unique coumarin conjugates with thiazolidinone as novel structural antibacterial modulators were exploited to combat the lethal multidrug-resistant bacterial infections. Bioactivity evaluation identified that indole-incorporated coumarin thiazolidinone conjugate 14a with low cytotoxicity to mammalian cells showed a broad antibacterial spectrum and exerted potent inhibition efficiencies to the tested germs at low concentrations (0.25-2 μg/mL). Moreover, the favorable performance of 14a in eradicating bacterial biofilm was beneficial to avert developing drug resistance. Mechanistic explorations revealed that molecule 14a was able to destroy cell membrane, leading to the leakage of intracellular materials and metabolism inhibition. The accumulation of excess reactive oxygen species (ROS) mediated by compound 14a could impede glutathione (GSH) activity and induce lipid peroxidation to suppress bacteria growth. Furthermore, compound 14a could not only intercalate into DNA base pair but also take part in non-covalent interaction with DNA gyrase B to hinder their biological function. Quantum chemical study indicated that molecule 14a had low HOMO-LUMO energy gap, which resulted in more stabilizing interactions and was conducive to displaying better antibacterial activity. ADMET analysis manifested that 14a possessed promising pharmacokinetic properties.

35 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies, is presented, and the similarities and differences of lipid nanoparticles and liposomes are also discussed.
Abstract: The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.

32 citations

Journal ArticleDOI
TL;DR: Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a conserved protein kinase that plays essential roles in various biological processes as mentioned in this paper .
Abstract: Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a conserved protein kinase that plays essential roles in various biological processes. It is located in the region q22.2 of chromosome 21, which is involved in the pathogenesis of Down syndrome (DS). Moreover, DYRK1A has been shown to promote the accumulation of amyloid beta (Aβ) peptides leading to gradual Tau hyperphosphorylation, which contributes to neurodegeneration. Additionally, alterations in the DRK1A expression are also associated with cancer and diabetes. Recent years have witnessed an explosive increase in the development of DYRK1A inhibitors. A variety of novel DYRK1A inhibitors have been reported as potential treatments for human diseases. In this review, the latest therapeutic potential of DYRK1A for different diseases and the novel DYRK1A inhibitors discoveries are summarized, guiding future inhibitor development and structural optimization.

32 citations

Journal ArticleDOI
TL;DR: In this paper , the biological activities of quercetin derivatives, as well as the relationship between activity and chemical structure and their mechanism of action, were investigated, which could be valuable in the creation and discovery of medications for a number of diseases.
Abstract: More studies are needed to develop new drugs for problems associated with drug resistance and unfavorable side effects. The natural flavonoid of quercetin revealed a wide range of biological activities by the modulation of various targets and signaling pathways. However, quercetin's low solubility and poor bioavailability have restricted its applicability; as a result, researchers have attempted to design and synthesize numerous novel quercetin derivatives using various methodologies in order to modify quercetin's constraints; the physico-chemical properties of quercetin's molecular scaffold make it appealing for drug development; low molecular mass and chemical groups are two of these characteristics. Therefore, the biological activities of quercetin derivatives, as well as the relationship between activity and chemical structure and their mechanism of action, were investigated. These quercetin-based molecules could be valuable in the creation and discovery of medications for a number of diseases.

30 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023541
2022994