scispace - formally typeset
Search or ask a question

Showing papers in "Functional & Integrative Genomics in 2023"


Journal ArticleDOI
Zhang Xueping1
TL;DR: Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long noncoding RNAs (lncRNA), and microRNAs (miRNA) as mentioned in this paper .
Abstract: Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.

11 citations


Journal ArticleDOI
TL;DR: In this paper , the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.
Abstract: Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.

9 citations


Journal ArticleDOI
TL;DR: In this paper , a shift in the cultivation pattern from chemical to the novel, upgraded gene-assisted designed eco-friendly methodologies which can help in incorporating, exploring, and harnessing the right microbiome consortium and can further help in the progression of environmentally friendly microbiome technologies for agricultural safety and productivity.
Abstract: The agricultural sector and environmental safety both work hand in hand to promote sustainability in important issues like soil health, plant nutrition, food safety, and security. The conventional methods have greatly harmed the environment and people's health and caused soil fertility and quality to decline as well as deteriorate. Keeping in view the excessive exploitation and cascade of degradation events due to unsustainable farming practices, the need of the hour demands choosing an appropriate, eco-friendly strategy to restore soil health, plant nutrition, and environmental aspects. The priority highlights a need for a sustainable and environment-friendly upgradation of the present agricultural systems to utilize the beneficial aspects related to harnessing the gene-microbiome strategies which would help in the restoration and replenishment of the microbial pool. Thus, exploring the microbiome is the utmost priority which gives a deep insight into the different aspects related to soil and plant and stands out as an important contributor to plant health and productivity. "Microbes" are important drivers for the biogeochemical cycles and targets like sustainability and safety. This essential microbial bulk (soil microbiome) is greatly influenced by agricultural/farming practices. Therefore, with the help of microbiome engineering technologies like meta-transcriptomics, meta-proteomics, metabolomics, and novel gene-altering techniques, we can easily screen out the highly diverse and balanced microbial population in the bulk of soil, enhancing the soil's health and productivity. Importantly, we need to change our cultivation strategies to attain such sustainability. There is an urgent need to revert to natural/organic systems of cultivation patterns where the microbiome hub can be properly utilized to strengthen soil health, decrease insect pest and disease incidence, reduce greenhouse gas emissions, and ultimately prevent environmental degradation. Through this article, we wish to propose a shift in the cultivation pattern from chemical to the novel, upgraded gene-assisted designed eco-friendly methodologies which can help in incorporating, exploring, and harnessing the right microbiome consortium and can further help in the progression of environmentally friendly microbiome technologies for agricultural safety and productivity.

8 citations













Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper explored hub genes related to different clinical types of cases with COVID-19 and predicted the therapeutic drugs related to severe cases, which may affect immune and male reproductive systems.
Abstract: This article aims to explore hub genes related to different clinical types of cases with COVID-19 and predict the therapeutic drugs related to severe cases. The expression profile of GSE166424 was divided into four data sets according to different clinical types of COVID-19 and then calculated the differential expression genes (DEGs). The specific genes of four clinical types of COVID-19 were obtained by Venn diagram and conducted enrichment analysis, protein-protein interaction (PPI) networks analysis, screening hub genes, and ROC curve analysis. The hub genes related to severe cases were verified in GSE171110, their RNA-specific expression tissues were obtained from the HPA database, and potential therapeutic drugs were predicted through the DGIdb database. There were 536, 266, 944, and 506 specific genes related to asymptomatic infections, mild, moderate, and severe cases, respectively. The hub genes of severe specific genes were AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11, and also differentially expressed in GSE171110 (P < 0.05), and their AUC values were greater than 0.955. The RNA tissue specificity of AURKB, CDC6, KIF11, UBE2C, CCNB2, CDC20, TOP2A, BUB1, and CCNB1 specifically enhanced on lymphoid tissue; CCNB2, CDC20, TOP2A, and BUB1 specifically expressed on the testis. Finally, 55 drugs related to severe COVID-19 were obtained from the DGIdb database. Summary, AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11 may be potential diagnostic biomarkers for severe COVID-19, which may affect immune and male reproductive systems. 55 drugs may be potential therapeutic drugs for severe COVID-19.




Journal ArticleDOI
TL;DR: In this article , a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70-80%), vermiculite (10-15%), coco peat (10−15%), and rhizobium (0-1%).
Abstract: Globally, industrial farming endangers crucial ecological mechanisms upon which food production relies, while 815 million people are undernourished and a significant number are malnourished. Zero Hunger aims to concurrently solve global ecological sustainability and food security concerns. Recent breakthroughs in molecular tools and approaches have allowed scientists to detect and comprehend the nature and structure of agro-biodiversity at the molecular and genetic levels, providing us an advantage over traditional methods of crop breeding. These bioinformatics techniques let us optimize our target plants for our soil-less medium and vice versa. Most of the soil-borne and seed-borne diseases are the outcomes of non-treated seed and growth media, which are important factors in low productivity. The farmers do not consider these issues, thereby facing problems growing healthy crops and suffering economic losses. This study is going to help the farmers increase their eco-friendly, chemical residue-free, quality yield of crops and their economic returns. The present invention discloses a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70–80%), vermiculite (10–15%), coco peat (10–15%), and Rhizobium (0–1%). The medium exhibits better physical and chemical characteristics than existing conventional media. The vermiculite to coco peat ratio is reduced, while the vermicompost ratio is increased, with the goals of lowering toxicity, increasing plant and water holding capacity, avoiding drying of the media, and conserving water. The medium provides balanced nutrition and proper ventilation for seed germination and the growth of seedlings. Rhizobium is also used to treat the plastic bags and seeds. The results clearly show that the current synergistic soil-less environment is best for complete plant growth. Securing genetic advantages via sexual recombination, induced random mutations, and transgenic techniques have been essential for the development of improved agricultural varieties. The recent availability of targeted genome-editing technology provides a new path for integrating beneficial genetic modifications into the most significant agricultural species on the planet. Clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) has evolved into a potent genome-editing tool for imparting genetic modifications to crop species. In addition, the integration of analytical methods like population genomics, phylogenomics, and metagenomics addresses conservation problems, while whole genome sequencing has opened up a new dimension for explaining the genome architecture and its interactions with other species. The in silico genomic and proteomic investigation was also conducted to forecast future investigations for the growth of French beans on a synergistic soil-less medium with the purpose of studying how a blend of vermicompost, vermiculite, cocopeat, and Rhizobium secrete metal ions, and other chemical compounds into the soil-less medium and affect the development of our target plant as well as several other plants. This interaction was studied using functional and conserved region analysis, phylogenetic analysis, and docking tools.






Journal ArticleDOI
TL;DR: In this article , the authors investigated the interaction between Omicron S protein RBD with the ACE2 receptor of 143 mammalian hosts including human by protein-protein interaction analysis and forecast the likelihood that the virus may infect other mammalian species that coexist with or are close to humans in the household, rural, agricultural, or zoological environments.
Abstract: In comparison to previously known severe respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the newly emerged Omicron (B.1.1.529) variant shows higher infectivity in humans. Exceptionally high infectivity of this variant raises concern of its possible transmission via other intermediate hosts. The SARS-CoV-2 infectivity is established via the association of spike (S) protein receptor binding domain (RBD) with host angiotensin I converting enzyme 2 (hACE2) receptor. In the course of this study, we investigated the interaction between Omicron S protein RBD with the ACE2 receptor of 143 mammalian hosts including human by protein-protein interaction analysis. The goal of this study was to forecast the likelihood that the virus may infect other mammalian species that coexist with or are close to humans in the household, rural, agricultural, or zoological environments. The Omicron RBD was found to interact with higher binding affinity with the ACE2 receptor of 122 mammalian hosts via different amino acid residues from the human ACE2 (hACE2). The rat (Rattus rattus) ACE2 was found to show the strongest interaction with Omicron RBD with a binding affinity of -1393.6 kcal/mol. These distinct strong binding affinity of RBD of Omicron with host ACE2 indicates a greater potential of new host transmissibility and infection via intermediate hosts. Though expected but the phylogenetic position of the mammalian species may not dictate the Omicron RBD binding to the host ACE2 receptor suggesting an involvement of multiple factors in guiding host divergence of the variant.



Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses to build a hypoxia-related risk score model (HYRS).
Abstract: Ovarian cancer (OC) is the most common malignant cancer in the female reproductive system. Hypoxia is an important part of tumor immune microenvironment (TIME), which is closely related to cancer progression and could significantly affect cancer metastasis and prognosis. However, the relationship between hypoxia and OC remained unclear. OCs were molecularly subtyped by consensus clustering analysis based on the expression characteristics of hypoxia-related genes. Kaplan-Meier (KM) survival was used to determine survival characteristics across subtypes. Immune infiltration analysis was performed by using Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) and microenvironment cell populations-counter (MCP-Counter). Differential expression analysis was performed by using limma package. Next, univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to build a hypoxia-related risk score model (HYRS). Mutational analysis was applied to determine genomic variation across the HYRS groups. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to compare the effectiveness of HYRS in immunotherapy prediction. We divided OC samples into two molecular subtypes (C1 and C2 subtypes) based on the expression signature of hypoxia genes. Compared with C1 subtype, there was a larger proportion of poor prognosis genotypes in the C2 subtype. And most immune cells scored higher in the C2 subtype. Next, we obtained a HYRS based on 7 genes. High HYRS group had a higher gene mutation rate, such as TP53. Moreover, HYRS performed better than TIDE in predicting immunotherapy effect. Combined with clinicopathological features, the nomogram showed that HYRS had the greatest impact on survival prediction and a strong robustness.


Journal ArticleDOI
TL;DR: In this article , the mRNA and microRNA expression profiles of duck embryonic hepatocytes (DEHs) in response to DHAV-1 were analyzed and enriched utilizing GO and KEGG, which may provide a hint for the interactions of virus and host.
Abstract: Duck hepatitis A virus 1 (DHAV-1) is one of the main contagious pathogens that causes rapid death of ducklings. To illuminate the potential of DHAV-1-infected underlying mechanisms, we analyzed the mRNA and microRNA (miRNA) expression profiles of duck embryonic hepatocytes (DEHs) in response to DHAV-1. We found 3410 differentially expressed genes (DEGs) and 142 differentially expressed miRNAs (DEMs) at 36 h after DHAV-1 infection. Additionally, DEGs and the target genes of miRNA expression were analyzed and enriched utilizing GO and KEGG, which may be crucial for immune responses, viral resistance, and mitophagy. For instance, the dysregulation of DDX58, DHX58, IRF7, IFIH1, STING1, TRAF3, CALCOCO2, OPTN, PINK1, and MFN2 in DHAV-1-infected DEHs was verified by RT-qPCR. Then, the association analysis of mRNAs and miRNAs was constructed utilizing the protein–protein interaction (PPI) networks, and the expressions of main miRNAs were confirmed, including miR-132c-3p, miR-6542-3p, and novel-mir163. These findings reveal a synthetic characterization of the mRNA and miRNA in DHAV-1-infected DEHs and advance the understanding of molecular mechanism in DHAV-1 infection, which may provide a hint for the interactions of virus and host.