scispace - formally typeset
Search or ask a question
JournalISSN: 1438-793X

Functional & Integrative Genomics 

Springer Science+Business Media
About: Functional & Integrative Genomics is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Gene & Medicine. It has an ISSN identifier of 1438-793X. Over the lifetime, 1275 publications have been published receiving 37264 citations. The journal is also known as: Functional and integrative genomics (Internet) & Functional and integrative genomics (Print).
Topics: Gene, Medicine, Biology, Genome, Gene expression


Papers
More filters
Journal ArticleDOI
TL;DR: A series of questions are explored to highlight some insights that comparative genomics has produced and how it could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.
Abstract: Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.

577 citations

Journal ArticleDOI
TL;DR: Different differences between water deficit and salinity were revealed and water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.
Abstract: Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

541 citations

Journal ArticleDOI
TL;DR: The mapped microsatellite loci will be useful not only for deletion stock verifications but also for allocating associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.
Abstract: Because of polyploidy and large genome size, deletion stocks of bread wheat are an ideal material for physically allocating ESTs and genes to small chromosomal regions for targeted mapping. To enhance the utility of deletion stocks for chromosome bin mapping, we characterized a set of 84 deletion lines covering the 21 chromosomes of wheat using 725 microsatellites. We localized these microsatellite loci to 94 breakpoints in a homozygous state (88 distal deletions, 6 interstitial), and 5 in a heterozygous state representing 159 deletion bins. Chromosomes from homoeologous groups 2 and 5 were the best covered (126 and 125 microsatellites, respectively) while the coverage for group 4 was lower (80 microsatellites). We assigned at least one microsatellite in up to 92% of the bins (mean 4.97 SSR/bin). Only a few discrepancies concerning marker order were observed. The cytogenetic maps revealed small genetic distances over large physical regions around the centromeres and large genetic to physical map ratios close to the telomeres. As SSRs are the markers of choice for many genetic and breeding studies, the mapped microsatellite loci will be useful not only for deletion stock verifications but also for allocating associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.

525 citations

Journal ArticleDOI
TL;DR: The cDNA microarray analysis showed that many ABA-inducible genes were induced after drought- and high-salinity-stress treatments, and that there is more crosstalk between drought and ABA responses than between ABA and cold responses.
Abstract: Full-length cDNAs are essential for functional analysis of plant genes. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. Microarray technology is a powerful tool for identifying genes induced by environmental stimuli or stress and for analyzing their expression profiles in response to environmental signals. We prepared an Arabidopsis full-length cDNA microarray containing around 7,000 independent full-length cDNA groups and analyzed the expression profiles of genes. The transcripts of 245, 54, 299 and 213 genes increased after abscisic acid (ABA), drought-, cold-, and salt-stress treatments, respectively, with inducibilities more than fivefold compared with those of control genes. The cDNA microarray analysis showed that many ABA-inducible genes were induced after drought- and high-salinity-stress treatments, and that there is more crosstalk between drought and ABA responses than between ABA and cold responses. Among the ABA-inducible genes identified, we identified 22 transcription factor genes, suggesting that many transcriptional regulatory mechanisms exist in the ABA signal transduction pathways. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s10142-002-0070-6 or from http://www.gsc.riken.go.jp/Plant/index.html.

449 citations

Journal ArticleDOI
TL;DR: This review will focus on the genomic expression responses of the budding yeast Saccharomyces cerevisiae to diverse environmental changes, highlighting some of the themes that have emerged from the collection of published yeast genomic expression studies.
Abstract: Unicellular organisms such as yeast have evolved to survive constant fluctuations in their external surroundings by rapidly adapting their internal systems to meet the challenges of each new environment. One aspect of this cellular adaptation is the reorganization of genomic expression to the program required for growth in each environment. The reprogramming of genomic expression can be unveiled using DNA microarrays, which measure the relative transcript abundance of essentially every gene in an organism's genome. Characterizing environmentally triggered gene expression changes provides insights into when, where, and how each gene is expressed and offers a glimpse at the physiological response of the cells to changes in their surroundings. This review will focus on the genomic expression responses of the budding yeast Saccharomyces cerevisiae to diverse environmental changes, highlighting some of the themes that have emerged from the collection of published yeast genomic expression studies. The results of these studies present insights as to how yeast cells sense and respond to each new environment, and suggest mechanisms that this organism uses to survive stressful environmental changes.

449 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023219
2022125
202158
202063
201969
201854