scispace - formally typeset
Search or ask a question

Showing papers in "Geochemical Transactions in 2001"


Journal ArticleDOI
TL;DR: In this paper, the effects of bioturbation by common polychaetes (Nereis spp. and Arenicola marina) in Northern European coastal waters on sediment carbon diagenesis is summarized and assessed.
Abstract: Known effects of bioturbation by common polychaetes (Nereis spp. and Arenicola marina) in Northern European coastal waters on sediment carbon diagenesis is summarized and assessed. The physical impact of irrigation and reworking activity of the involved polychaete species is evaluated and related to their basic biology. Based on past and present experimental work, it is concluded that effects of bioturbation on carbon diagenesis from manipulated laboratory experiments cannot be directly extrapolated to in situ conditions. The 45–260% flux (e.g., CO2 release) enhancement found in the laboratory is much higher than usually observed in the field (10–25%). Thus, the faunal induced enhancement of microbial carbon oxidation in natural sediments instead causes a reduction of the organic matter inventory rather than an increased release of CO2 across the sediment/water interface. The relative decrease in organic inventory (Gb/Gu) is inversely related to the relative increase in microbial capacity for organic matter decay (kb/ku). The equilibrium is controlled by the balance between organic input (deposition of organic matter at the sediment surface) and the intensity of bioturbation. Introduction of oxygen to subsurface sediment and removal of metabolites are considered the two most important underlying mechanisms for the stimulation of carbon oxidation by burrowing fauna. Introduction of oxygen to deep sediment layers of low microbial activity, either by downward irrigation transport of overlying oxic water or by upward reworking transport of sediment to the oxic water column will increase carbon oxidation of anaerobically refractory organic matter. It appears that the irrigation effect is larger than and to a higher degree dependent on animal density than the reworking effect. Enhancement of anaerobic carbon oxidation by removal of metabolites (reduced diffusion scale) may cause a significant increase in total sediment metabolism. This is caused by three possible mechanisms: (i) combined mineralization and biological uptake; (ii) combined mineralization and abiogenic precipitation; and (iii) alleviation of metabolite inhibition. Finally, some suggestions for future work on bioturbation effects are presented, including: (i) experimental verification of metabolite inhibition in bioturbated sediments; (ii) mapping and quantification of the role of metals as electron acceptors in bioturbated sediments; and (iii) identification of microbial community composition by the use of new molecular biological techniques. These three topics are not intended to cover all unresolved aspects of bioturbation, but should rather be considered a list of obvious gaps in our knowledge and present new and appealing approaches.

163 citations


Journal ArticleDOI
TL;DR: Based on past and present experimental work, it is concluded that effects of bioturbation on carbon diagenesis from manipulated laboratory experiments cannot be directly extrapolated to in situ conditions.
Abstract: Known effects of bioturbation by common polychaetes (Nereis spp. and Arenicola marina) in Northern European coastal waters on sediment carbon diagenesis is summarized and assessed. The physical impact of irrigation and reworking activity of the involved polychaete species is evaluated and related to their basic biology. Based on past and present experimental work, it is concluded that effects of bioturbation on carbon diagenesis from manipulated laboratory experiments cannot be directly extrapolated to in situ conditions. The 45-260% flux (e.g., CO2 release) enhancement found in the laboratory is much higher than usually observed in the field (10-25%). Thus, the faunal induced enhancement of microbial carbon oxidation in natural sediments instead causes a reduction of the organic matter inventory rather than an increased release of CO2 across the sediment/water interface. The relative decrease in organic inventory (Gb/Gu) is inversely related to the relative increase in microbial capacity for organic matter decay (kb/ku). The equilibrium is controlled by the balance between organic input (deposition of organic matter at the sediment surface) and the intensity of bioturbation. Introduction of oxygen to subsurface sediment and removal of metabolites are considered the two most important underlying mechanisms for the stimulation of carbon oxidation by burrowing fauna. Introduction of oxygen to deep sediment layers of low microbial activity, either by downward irrigation transport of overlying oxic water or by upward reworking transport of sediment to the oxic water column will increase carbon oxidation of anaerobically refractory organic matter. It appears that the irrigation effect is larger than and to a higher degree dependent on animal density than the reworking effect. Enhancement of anaerobic carbon oxidation by removal of metabolites (reduced diffusion scale) may cause a significant increase in total sediment metabolism. This is caused by three possible mechanisms: (i) combined mineralization and biological uptake; (ii) combined mineralization and abiogenic precipitation; and (iii) alleviation of metabolite inhibition. Finally, some suggestions for future work on bioturbation effects are presented, including: (i) experimental verification of metabolite inhibition in bioturbated sediments; (ii) mapping and quantification of the role of metals as electron acceptors in bioturbated sediments; and (iii) identification of microbial community composition by the use of new molecular biological techniques. These three topics are not intended to cover all unresolved aspects of bioturbation, but should rather be considered a list of obvious gaps in our knowledge and present new and appealing approaches.

94 citations


Journal ArticleDOI
TL;DR: In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.
Abstract: Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5–65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.

93 citations


Journal ArticleDOI
TL;DR: In this article, an ionic interaction model that can be used to determine the activity and speciation of divalent and trivalent metals in seawater and other natural elements is discussed.
Abstract: The form or speciation of a metal in natural waters can change its kinetic and thermodynamic properties. For example, Cu(II) in the free ionic form is toxic to phytoplankton, while copper complexed to organic ligands is not toxic. The form of a metal in solution can also change its solubility. For example, Fe(II) is soluble in aqueous solutions while Fe(III) is nearly insoluble. Natural organic ligands interactions with Fe(III) can increase the solubility by 20-fold in seawater. Ionic interaction models that can be used to determine the activity and speciation of divalent and trivalent metals in seawater and other natural elements will be discussed. The model is able to consider the interactions of metals with the major (Cl-, SO42-, HCO3-, CO32-, Br-, F-) and minor (OH-, H2PO4-, HPO42-, PO43-, HS-) anions as a function of temperature (0 to 50 °C), ionic strength [0 to 6 m (m = mol kg-1)] and pH (1 to 13). Recently, it has been shown that many divalent metals are complexed with organic ligands. Although the composition of these ligands is not known, a number of workers have used voltammetry to determine the concentration of the ligand [L n ] and the stability constant (KML) for the formation of the complex M2+ + L n → MLn+2 KML= [MLn+2]/[M2+] [L n ] We have added the experimental values of KML for the formation of complexes of natural organics in seawater of known concentration ([L n ]) with Cu2+, Zn2+, Cd2+, Co2+, and Fe3+ . The model can be used to examine the competition of inorganic and organic ligands for divalent metals as a function of ionic strength. The importance of organic ligands in controlling the solubility of Fe(III) in seawater will be discussed. New experimental studies are needed to extend the model to higher temperatures and ionic strength.

72 citations


Journal ArticleDOI
TL;DR: In the Franklin Seamount at the western extremity of Woodlark Basin, Papua New Guinea, Fe-Si-Mn oxyhydroxides are being precipitated as chimneys and mounds upon a substrate of mafic lava.
Abstract: Deposits of Fe-Si-Mn oxyhydroxides are commonly found on the seafloor on seamounts and mid-ocean spreading centers. At Franklin Seamount located near the western extremity of Woodlark Basin, Papua New Guinea, Fe-Si-Mn oxyhydroxides are being precipitated as chimneys and mounds upon a substrate of mafic lava. Previous studies have shown that the vent fluids have a low temperature (20–30°C) and are characterized by a total dissolved iron concentration of 0.038 mM kg-1, neutral pH (6.26) and no measurable H2S. The chimneys have a yellowish appearance with mottled red–orange patches when observed in situ from a submersible, but collected samples become redder within a few hours of being removed from the sea. The amorphous iron oxyhydroxides, obtained from active and inactive vents, commonly possess filamentous textures similar in appearance to sheaths and stalks excreted by the iron-oxidizing bacteria Leptothrix and Gallionella; however, formless agglomerates are also common. Textural relationships between apparent bacterial and non-bacterial iron suggest that the filaments are coeval with and/or growing outwards from the agglomerates. The amorphous iron oxyhydroxides are suggested to precipitate hydrothermally as ferrosic hydroxide, a mixed-valence (Fe2+-Fe3+) green–yellow iron hydroxide compound. Consideration of the thermodynamics and kinetics of iron in the vent fluid, suggest that the precipitation is largely pH controlled and that large amounts of amorphous iron oxyhydroxides are capable of being precipitated by a combination of abiotic hydrothermal processes. Some biologically induced precipitation of primary ferric oxyhydroxides (two-XRD-line ferrihydrite) may have occurred directly from the fluid, but most of the filamentous iron micro-textures in the samples appear to have a diagenetic origin. They may have formed as a result of the interaction between the iron-oxidizing bacteria and the initially precipitated ferrosic hydroxide that provided a source of ferrous iron needed for their growth. The processes described at Franklin Seamount provide insight into the formation of other seafloor oxyhydroxide deposits and ancient oxide-facies iron formation.

62 citations


Journal ArticleDOI
TL;DR: In this paper, the aqueous geochemistry of Zn, Cu, Cd, Fe, Mn and As was discussed within the context of an anaerobic treatment wetland in Butte, Montana.
Abstract: The aqueous geochemistry of Zn, Cu, Cd, Fe, Mn and As is discussed within the context of an anaerobic treatment wetland in Butte, Montana. The water being treated had a circum-neutral pH with high concentrations of trace metals and sulfate. Reducing conditions in the wetland substrate promoted bacterial sulfate reduction (BSR) and precipitation of dissolved metal as sulfide minerals. ZnS was the most common sulfide phase found, and consisted of framboidal clusters of individual spheres with diameters in the submicron range. Some of the ZnS particles passed through the subsurface flow, anaerobic cells in suspended form. The concentration of "dissolved" trace metals (passing through a 0.45 μm filter) was monitored as a function of H2S concentration, and compared to predicted solubilities based on experimental studies of aqueous metal complexation with dissolved sulfide. Whereas the theoretical predictions produce "U-shaped" solubility curves as a function of H2S, the field data show a flat dependence of metal concentration on H2S. Observed metal concentrations for Zn, Cu and Cd were greater than the predicted values, particularly at low H2S concentration, whereas Mn and As were undersaturated with their respective metal sulfides. Results from this study show that water treatment facilities employing BSR have the potential to mobilize arsenic out of mineral substrates at levels that may exceed regulatory criteria. Dissolved iron was close to equilibrium saturation with amorphous FeS at the higher range of sulfide concentrations observed (>0.1 mmol H2S), but was more likely constrained by goethite at lower H2S levels. Inconsistencies between our field results and theoretical predictions may be due to several problems, including: (i) a lack of understanding of the form, valence, and thermodynamic stability of poorly crystalline metal sulfide precipitates; (ii) the possible influence of metal sulfide colloids imparting an erroneously high "dissolved" metal concentration; (iii) inaccurate or incomplete thermodynamic data for aqueous metal complexes at the conditions of the treatment facility; and (iv) difficulties in accurately measuring low concentrations of dissolved sulfide in the field.

59 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the controversy surrounding the mechanism of the oxidative dissolution of arsenopyrite and conclude that it is likely the other constituents of the mineral lattice, Fe and As, are leached out, leaving behind a S0 lattice.
Abstract: The elemental sulfur formed at the arsenopyrite surface after oxidation by ferric iron was quantitatively measured by extraction in perchloroethylene and subsequent quantitative analysis by HPLC. Reactions with ferric iron in perchloric acid solutions or in sulfuric acid solutions (both at pH = 1 and 42°C, which approximate extreme acid mine drainage conditions) produced elemental sulfur in quantities greater than 50% of the total reacted sulfur. The controversy surrounding the mechanism of the oxidative dissolution of arsenopyrite is discussed in light of these measurements. Based on the observation of greater than 50% production of elemental sulfur, a mechanism by which all the sulfur from the mineral proceeds through thiosulfate can be eliminated as a possible description of the dissolution of arsenopyrite. Instead, it is likely the other constituents of the mineral lattice, Fe and As, are leached out, leaving behind a S0 lattice. Nucleation reactions will then result in the formation of stable S8 rings.

29 citations


Journal ArticleDOI
TL;DR: A small glass bead-filled flow through bioreactors is constructed to mimic marine sediments to investigate the role of diatoms in stabilizing the sediment against physical disturbance and the effect of Pseudoalteromonas haloplanktis growth on bead bed hydraulic conductivity and bead bed stability.
Abstract: Most wetted surfaces that are illuminated support a population of phototrophs The marine sediment is no exception and there the major component of the microphytobenthic population is diatoms These organisms are credited with stabilizing the sediment against physical disturbance by virtue of the extracellular carbohydrate polymers that they elaborate However, diatoms synthesize and secrete several carbohydrate polymers and it is not certain which of them is involved in the stabilization process In order to investigate this, we have constructed small glass bead-filled flow through bioreactors to mimic marine sediments The flow rate through the bioreactors was found to reflect the physical stability of the bead bed Thus flow rate was measured as a function of diatom growth and the production of three operationally-defined polymers, ie, those soluble in the medium, those soluble in 05 M NaHCO3 at 90 °C and those not soluble in either solvent (matrix polymer) Growth of the diatoms did not change the hydraulic conductivity of the bioreactors For Amphora coffeaeformis, neither did the production of medium-soluble nor NaHCO3-soluble polymers However, matrix polymer accumulation was directly correlated with a reduction in flow (regression coefficient R2 = 096) and stabilization against physical disturbance Results with species of Navicula were not as clear Both NaHCO3-soluble and matrix polymers were involved in producing the flow reduction In the same manner we also measured the effect of Pseudoalteromonas haloplanktis growth on bead bed hydraulic conductivity and bead bed stability Growing alone, no effect was found, but in co-culture with a single diatom species, the bacteria reduced the diatom effect on flow through the bioreactors seen earlier, however did not reduce the extent of their growth Confocal scanning laser microscopy of beads colonized with diatoms alone, or diatoms in co-culture with bacteria, revealed that P haloplanktis was able to inhibit diatom adhesion to the beads When the bacteria were present there was less matrix polymer evident We speculate that this interference with diatom metabolic activity was either the result of less matrix polymer synthesis, or its hydrolysis by the bacteria The results are applicable to mixed species biofilms of this type on surfaces other than sediments

28 citations


Journal ArticleDOI
TL;DR: In this article, a series of molecular dynamics simulations have been performed on organic-water mixtures near mineral surfaces, showing that small polar organic compounds such as phenols can penetrate through thin water films to adsorb on these mineral surfaces.
Abstract: A series of molecular dynamics simulations have been performed on organic–water mixtures near mineral surfaces. These simulations show that, in contrast to apolar compounds, small polar organic compounds such as phenols can penetrate through thin water films to adsorb on these mineral surfaces. Furthermore, additional simulations involving demixing of an organic–water mixture near a surfactant-covered mineral surface demonstrate that even low concentrations of adsorbed polar compounds can induce major changes in mineral surface wettability, allowing sorption of apolar molecules. This strongly supports a two-stage adsorption mechanism for organic solutes, involving initial migration of small polar organic molecules to the mineral surface followed by water film displacement due to co-adsorption of the more apolar organic compounds, thus converting an initial water-wet mineral system to an organic-covered surface. This has profound implications for studies of petroleum reservoir diagenesis and wettability changes.

26 citations


Journal ArticleDOI
TL;DR: Electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh suggest a summer release of dissolved organic species from the dominant tall form Spartina alterniflora appears to result in increased SO42- reduction intensity and hence high summer concentrations of ΣH2S in flat sediments, but increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments.
Abstract: We report electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh. In creek bank sediments, the absence of ΣH2S or FeSaq and the presence of Fe(III)–organic complexes suggest that Mn and Fe reduction dominates over at least the top ca. 5 cm of the sediment column, consistent with other recent results. In unvegetated flats, accumulation of ΣH2S indicates that SO42- reduction dominates over the same depth. A summer release of dissolved organic species from the dominant tall form Spartina alterniflora, together with elevated temperatures, appears to result in increased SO42- reduction intensity and hence high summer concentrations of ΣH2S in flat sediments. However, increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments. Studies of biogeochemical processes in salt marshes need to take such spatial and temporal variations into account if we are to develop a good understanding of these highly productive ecosystems. Furthermore, multidimensional analyses are necessary to obtain adequate quantitative pictures of such heterogeneous sediments.

26 citations


Journal ArticleDOI
TL;DR: The simulation results illustrate that sediment particles, pore water, and microorganisms within a few millimeters of burrow walls experience significant oscillation in pH and dissolved oxygen concentration whereas such oscillation is absent at the water/ sediment interface.
Abstract: The burrow walls created by macrofauna in aquatic sediments are sites of intense chemical mass transfer. Quantitative measurement of their significance is, however, difficult because chemistry in the immediate vicinity of burrow walls is temporally dynamic due to periodic ventilation of burrows by macrofauna. A temporally dynamic, 2D multicomponent diffusion-reaction model was utilized to depict the magnitude and time dependency of chemical mass transfer in the immediate vicinity of burrow walls as well as at the water/sediment interface. The simulation results illustrate that sediment particles, pore water, and microorganisms within a few millimeters of burrow walls experience significant oscillation in pH (as much as two pH units) and dissolved oxygen concentration (between saturation and near anoxia) whereas such oscillation is absent at the water/ sediment interface. The geochemical oscillation is expected to affect the net stability of mineral phases, activities and community structures of microorganisms, and rates and magnitudes of microbial diagenetic reactions.

Journal ArticleDOI
TL;DR: The voltammetric methods that are used to assess metal–organic complexation in seawater consist of titration methods using anodic stripping voltammetry and cathodic strippingvoltammetry competitive ligand experiments (CSV-CLE) and a kinetic approach using CSV-CLE.
Abstract: We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample.

Journal ArticleDOI
TL;DR: The ability of six humic acids (HAs) to form pseudomicellar structures in aqueous solution was evaluated by five techniques: size exclusion chromatography; pyrene fluorescence enhancement; the pyrene I1/I3 ratio; the cloud point of dilute HA solutions; and the fluorescence anisotropy of HAs as mentioned in this paper.
Abstract: The ability of six humic acids (HAs) to form pseudomicellar structures in aqueous solution was evaluated by five techniques: size exclusion chromatography; pyrene fluorescence enhancement; the pyrene I1/I3 ratio; the cloud point of dilute HA solutions; and the fluorescence anisotropy of HAs. Soil HAs were found to aggregate most easily, both on microscopic and macroscopic scales. The formation of amphiphilic structures was chiefly related to HA-solvent interactions: highly solvated HAs aggregated poorly, while a lignite derived material underwent intermolecular, rather than intramolecular, rearrangements. A newly discovered algal HA was found to have minimal aggregative properties.


Journal ArticleDOI
TL;DR: In this paper, an automatic system for the continuous monitoring of CO2, H2S, SO2 and meteorological parameters in atmosphere has been developed, which has been tested in the laboratory in order to verify the stability and reliability of each sensor and of the whole system.
Abstract: An automatic system for the continuous monitoring of CO2, H2S, SO2 and meteorological parameters in atmosphere has been developed. The system has been tested in the laboratory in order to verify the stability and reliability of each sensor and of the whole system. A field test for a period of one month, at the Solfatara of Pozzuoli has also been carried out. The acquired data during the field test reveal a correlation between the wind speed and the concentrations of CO2, H2S, and SO2 in the atmosphere. With a wind speed of over 4 ms-1 the concentration of the three gases reached constant background values of 600 ppm for CO2 and about 2 ppm vol. for H2S and SO2. The different ratios of H2S/SO2 measured in the fumaroles (~100) and in the atmosphere (1–0.1) clearly indicate that H2S is oxidized to SO2 during the transport.


Journal ArticleDOI
TL;DR: In this paper, the results of ruthenium tetroxide (RuO4) oxidation of a mature Class Ib amber polymer are reported and discussed, and it is shown that the residual double bond present in mature Class I ambers is not located in the A/B ring structure of these materials and that C17 of the original labdanoid precursors is retained as a methyl group.
Abstract: The results of ruthenium tetroxide (RuO4) oxidation of a mature Class Ib amber polymer are reported and discussed. These data indicate that the residual double bond present in mature Class I ambers is not located in the A/B ring structure of these materials and that C17 of the original labdanoid precursors is retained in mature Class I ambers as a methyl group. These data also suggest that the reaction which results in formation of the residual unsaturated structure in mature ambers also results in a second covalent connection between the A/B ring system and the polymer backbone, probably through C8 of the original labdanoid structure.




Journal ArticleDOI
TL;DR: In this article, the results of ruthenium tetroxide (RuO4) oxidation of a mature Class Ib amber polymer are reported and discussed, and it is shown that the residual double bond present in mature Class I ambers is not located in the A/B ring structure of these materials and that C17 of the original labdanoid precursors is retained as a methyl group.
Abstract: The results of ruthenium tetroxide (RuO4) oxidation of a mature Class Ib amber polymer are reported and discussed. These data indicate that the residual double bond present in mature Class I ambers is not located in the A/B ring structure of these materials and that C17 of the original labdanoid precursors is retained in mature Class I ambers as a methyl group. These data also suggest that the reaction which results in formation of the residual unsaturated structure in mature ambers also results in a second covalent connection between the A/B ring system and the polymer backbone, probably through C8 of the original labdanoid structure.