scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Applied Mechanics and Engineering in 2008"


Journal Article
TL;DR: In this article, the authors present a conceptualization of the complex 3D flow field on a rotor blade, where stall begins and how it progresses, driven by the needs to formulate a reasonably simple model that complements the 2-D airfoil characteristics used to predict rotor performance.
Abstract: In the design process of improved rotor blades the need for accurate aerodynamic predictions is very important. During the last years a large effort has gone into developing CFD tools for prediction of wind turbine flows (Duque et al., 2003; Fletcher et al., 2009; Sorensen et al.,2002). However, there are still some unclear aspects for engineers regarding the practical application of CFD, such as computational domain size, reference system for different computational blocks, mesh quality and mesh number, turbulence, etc. Thus, in the design process and in the power curve prediction of wind turbines, the aerodynamic forces are calculated with some form of the blade element method (BEM) and its extensions to the three-dimensional wing aerodynamics. The results obtained by the standard methods are reasonably accurate in the proximity of the design point, but in stalled condition the BEM is known to underpredict the forces acting on the blades (Himmelskamp, 1947). The major disadvantage of these methods is that the airflow is reduced to axial and circumferential flow components (Glauert, 1963). Disregarding radial flow components present in the bottom of separated boundary layers of rotating wings leads to alteration of lift and drag characteristics of the individual blade sections with respect to the 2-D airfoils (Bjorck, 1995). Airfoil characteristics of lift (CL) and drag (CD) coefficients are normally derived from twodimensional (2-D) wind tunnel tests. However, after stall the flow over the inboard half of the rotor is strongly influenced by poorly understood 3-D effects (Banks & Gadd, 1963; Tangler, 2002). The 3-D effects yield delayed stall with CL higher than 2.0 near the blade root location and with correspondingly high CD. Now the design of constant speed, stallregulated wind turbines lacks adequate theory for predicting their peak and post-peak power and loads. During the development of stall-regulated wind turbines, there were several attempts to predict 3-D post-stall airfoil characteristics (Corrigan & Schlichting, 1994; Du & Schling, 1998; Snel et al., 1993), but these methods predicted insufficient delayed stall in the root region and tended to extend the delayed stall region too far out on the blade. The present work aims at giving a conceptualization of the complex 3-D flow field on a rotor blade, where stall begins and how it progresses, driven by the needs to formulate a reasonably simple model that complements the 2-D airfoil characteristics used to predict rotor performance. Understanding wind turbine aerodynamics (Hansen & Butterfield, 1993) in all working states is one of the key factors in making improved predictions of their performance. The flow field associated with wind turbines is highly three-dimensional and the transition to two-dimensional outboard separated flow is yet not well understood. A continued effort is

20 citations