scispace - formally typeset
Search or ask a question
JournalISSN: 1107-3756

International Journal of Molecular Medicine 

Spandidos Publishing
About: International Journal of Molecular Medicine is an academic journal published by Spandidos Publishing. The journal publishes majorly in the area(s): Cell cycle & Apoptosis. It has an ISSN identifier of 1107-3756. Over the lifetime, 7743 publications have been published receiving 183693 citations. The journal is also known as: Progress in Neuro-Psychopharmacology & Biological Psychiatry.
Topics: Cell cycle, Apoptosis, Oncogene, Cell, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: The mechanism of action of phosphorylation is discussed, with particular attention to the importance ofosphorylation under physiological and pathological conditions, and the possibility of using kinase inhibitors in the treatment of tumors.
Abstract: Protein phosphorylation is an impo-rtant cellular regulatory mechanism as many enzymes and receptors are activated/deactivated by phosphorylation and dephosphorylation events, by means of kinases and phosph-atases. In particular, the protein kinases are responsible for cellular transduction signaling and their hyperactivity, malfunction or overexpression can be found in several diseases, mostly tumors. Therefore, it is evident that the use of kinase inhibitors can be valuable for the treatment of cancer. In this review, we discuss the mechanism of action of phosphorylation, with particular attention to the importance of phosphorylation under physiological and pathological conditions. We also discuss the possibility of using kinase inhibitors in the treatment of tumors.

711 citations

Journal ArticleDOI
TL;DR: This review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS.
Abstract: The mammalian mitochondrial electron transport chain (ETC) includes complexes I‑IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I‑IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1‑5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non‑shivering thermogenesis. The core role of UCP2‑5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.

650 citations

Journal ArticleDOI
TL;DR: The role of MMPs in normal wound repair as well as in chronic ulcers is discussed, and the role of signaling pathways, in particular, mitogen-activated protein kinases (MAPKs) in regulating MMP expression is discussed as possible therapeutical targets for wound healing disorders.
Abstract: Wound repair is initiated with the aggregation of platelets, formation of a fibrin clot, and release of growth factors from the activated coagulation pathways, injured cells, platelets, and extracellular matrix (ECM), followed by migration of inflammatory cells to the wound site. Thereafter, keratinocytes migrate over the wound, angiogenesis is initiated, and fibroblasts deposit and remodel the granulation tissue. Cell migration, angiogenesis, degradation of provisional matrix, and remodeling of newly formed granulation tissue, all require controlled degradation of the ECM. Disturbance in the balance between ECM production and degradation leads to formation of chronic ulcers with excessive ECM degradation, or to fibrosis, for example hypertrophic scars or keloids characterized by excessive accumulation of ECM components. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which as a group can degrade essentially all ECM components. So far, 20 members of the human MMP family have been identified. Based on their structure and substrate specificity, they can be divided into subgroups of collagenases, stromelysins, stromelysin-like MMPs, gelatinases, membrane-type MMPs (MT-MMPs), and other MMPs. In this review, the role of MMPs in normal wound repair as well as in chronic ulcers is discussed. In addition, the role of signaling pathways, in particular, mitogen-activated protein kinases (MAPKs) in regulating MMP expression is discussed as possible therapeutical targets for wound healing disorders.

477 citations

Journal ArticleDOI
TL;DR: Examination of expression of fatty acid metabolism-related genes in NAFLD indicated increased de novo synthesis and uptake of fatty acids lead to further fatty acid accumulation in hepatocytes, and antioxidant pathways are activated to neutralize reactive oxygen species (ROS), which are overproduced during oxidative processes.
Abstract: Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver dysfunction, and its prevalence has markedly increased. We previously evaluated the expression of fatty acid metabolism-related genes in NAFLD and reported changes in expression that could contribute to increased fatty acid synthesis. In the present study, we evaluated the expression of additional fatty acid metabolism-related genes in larger groups of NAFLD (n=26) and normal liver (n=10) samples. The target genes for real-time PCR analysis were as follows: acetyl-CoA carboxylase (ACC) 1, ACC2, fatty acid synthase (FAS), sterol regulatory element-binding protein 1c (SREBP-1c), and adipose differentiation-related protein (ADRP) for evaluation of de novo synthesis and uptake of fatty acids; carnitine palmitoyltransferase 1a; (CPT1a), long-chain acyl-CoA dehydrogenase (LCAD), long-chain L-3-hydroxyacylcoenzyme A dehydrogenase alpha (HADHalpha), uncoupling protein 2 (UCP2), straight-chain acyl-CoA oxidase (ACOX), branched-chain acyl-CoA oxidase (BOX), cytochrome P450 2E1 (CYP2E1), CYP4A11, and peroxisome proliferator-activated receptor (PPAR)alpha for oxidation in the mitochondria, peroxisomes and microsomes; superoxide dismutase (SOD), catalase, and glutathione synthetase (GSS) for antioxidant pathways; and diacylglycerol O-acyltransferase 1 (DGAT1), PPARgamma, and hormone-sensitive lipase (HSL) for triglyceride synthesis and catalysis. In NAFLD, although fatty acids accumulated in hepatocytes, their de novo synthesis and uptake were up-regulated in association with increased expression of ACC1, FAS, SREBP-1c, and ADRP. Fatty acid oxidation-related genes, LCAD, HADHalpha, UCP2, ACOX, BOX, CYP2E1, and CYP4A11, were all overexpressed, indicating that oxidation was enhanced in NAFLD, whereas the expression of CTP1a and PPARalpha was decreased. Furthermore, SOD and catalase were also overexpressed, indicating that antioxidant pathways are activated to neutralize reactive oxygen species (ROS), which are overproduced during oxidative processes. The expression of DGAT1 was up-regulated without increased PPARgamma expression, whereas the expression of HSL was decreased. Our data indicated the following regarding NAFLD: i) increased de novo synthesis and uptake of fatty acids lead to further fatty acid accumulation in hepatocytes; ii) mitochondrial fatty acid oxidation is decreased or fully activated; iii) in order to complement the function of mitochondria (beta-oxidation), peroxisomal (beta-oxidation) and microsomal (omega-oxidation) oxidation is up-regulated to decrease fatty acid accumulation; iv) antioxidant pathways including SOD and catalase are enhanced to neutralize ROS overproduced during mitochondrial, peroxisomal, and microsomal oxidation; and v) lipid droplet formation is enhanced due to increased DGAT expression and decreased HSL expression. Further studies will be needed to clarify how fatty acid synthesis is increased by SREBP-1c, which is under the control of insulin and AMP-activated protein kinase.

474 citations

Journal ArticleDOI
TL;DR: Results indicated a tropism of MSCs for the injured kidney and a potential contribution of these cells to tubular regeneration and to the recovery from ARF.
Abstract: Acute renal failure (ARF) is a common disease with high morbidity and mortality. Recovery from ARF is dependent on the replacement of necrotic tubular cells with functional tubular epithelium. Recent advancement in developmental biology led to the discovery of immature mesenchymal stem cells (MSCs) in bone marrow and several established organs and to the definition of their potential in the recovery from tissue injury. We investigated the effect of MSCs infusion on the recovery from ARF induced by intramuscle injection of glycerol in C57/BL6 mice. In this model, ARF is associated with an extensive necrosis of tubular epithelial cells due to myoglobin- and hemoglobin-induced injury. MSCs were obtained from bone marrow of transgenic mice expressing green fluorescent protein (GFP). MSC GFP-positive cells (MSC-GFP(+)) injected intravenously homed to the kidney of mice with glycerol-induced ARF but not to the kidney of normal mice. MSC-GFP(+) localized in the context of the tubular epithelial lining and expressed cytokeratin, indicating that MSCs engrafted in the damaged kidney, differentiated into tubular epithelial cells and promoted the recovery of morphological and functional alterations. Moreover, MSCs enhanced tubular proliferation as detected by the increased number of proliferating cell nuclear antigen (PCNA) positive cells. A significant contribution of the engrafted MSCs in the regeneration of tubular epithelial cells was shown by the presence of a consistent number of GFP(+) tubular cells 21 days after the induction of injury. In conclusion, these results indicated a tropism of MSCs for the injured kidney and a potential contribution of these cells to tubular regeneration and to the recovery from ARF.

444 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202368
2022138
2021139
2020366
2019386
2018689