scispace - formally typeset
Search or ask a question
JournalISSN: 2372-3556

Molecular and Cellular Oncology 

Taylor & Francis
About: Molecular and Cellular Oncology is an academic journal published by Taylor & Francis. The journal publishes majorly in the area(s): Cancer & Autophagy. It has an ISSN identifier of 2372-3556. Over the lifetime, 988 publications have been published receiving 8768 citations. The journal is also known as: Mol Cell Oncol & Molecular and cellular oncology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner and significantly enhanced the anticancer activity of 2 first-line chemotherAPEutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells.
Abstract: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells.

305 citations

Journal ArticleDOI
TL;DR: The dual role of autophagy in oncogenesis and tumor progression is discussed, and the results or design of clinical studies recently completed or initiated to evaluate the therapeutic activity of chloroquine derivatives in cancer patients are summarized.
Abstract: Macroautophagy (herein referred to as autophagy) is a highly conserved mechanism for the lysosomal degradation of cytoplasmic components. Autophagy is critical for the maintenance of intracellular homeostasis, both in baseline conditions and in the context of adaptive responses to stress. In line with this notion, defects in the autophagic machinery have been etiologically associated with various human disorders including infectious, inflammatory and neoplastic conditions. Once tumors are established, however, autophagy sustains the survival of malignant cells, hence representing an appealing target for the design of novel anticancer regimens. Accordingly, inhibitors of autophagy including chloroquine and hydroxychloroquine have been shown to mediate substantial antineoplastic effects in preclinical models, especially when combined with chemo- or radiotherapeutic interventions. The pharmacological profile of chloroquine and hydroxychloroquine, however, appear to involve mechanisms other than autophagy inhibition. Here, we discuss the dual role of autophagy in oncogenesis and tumor progression, and summarize the results or design of clinical studies recently completed or initiated to evaluate the therapeutic activity of chloroquine derivatives in cancer patients.

171 citations

Journal ArticleDOI
TL;DR: The current understanding of the molecular mechanism of Autophagy and the potential roles of autophagy in cell death, cancer development, and cancer treatment are reviewed.
Abstract: Autophagy is an evolutionarily conserved intracellular catabolic process that is used by all cells to degrade dysfunctional or unnecessary cytoplasmic components through delivery to the lysosome. Increasing evidence reveals that autophagic dysfunction is associated with human diseases, such as cancer. Paradoxically, although autophagy is well recognized as a cell survival process that promotes tumor development, it can also participate in a caspase-independent form of programmed cell death. Induction of autophagic cell death by some anticancer agents highlights the potential of this process as a cancer treatment modality. Here, we review our current understanding of the molecular mechanism of autophagy and the potential roles of autophagy in cell death, cancer development, and cancer treatment.

158 citations

Journal ArticleDOI
TL;DR: This review provides a brief update on the different cell death modalities and describes in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors.
Abstract: Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research.

150 citations

Journal ArticleDOI
TL;DR: The roles of the ATM- CHK2 and ATR-CHK1 pathways in cancer initiation and progression are overviewed, and the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics are summarized.
Abstract: The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR-CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM-CHK2 and ATR-CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR-CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.

121 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20232
202218
202191
2020123
201984
2018124