scispace - formally typeset
Search or ask a question
JournalISSN: 2041-1006

Molecular Oral Microbiology 

Wiley
About: Molecular Oral Microbiology is an academic journal published by Wiley. The journal publishes majorly in the area(s): Porphyromonas gingivalis & Biofilm. It has an ISSN identifier of 2041-1006. Over the lifetime, 474 publications have been published receiving 12555 citations. The journal is also known as: MOM.


Papers
More filters
Journal ArticleDOI
TL;DR: A new model of pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial community rather than by select 'periopathogens', such as the 'red complex' is described.
Abstract: Recent advancements in the periodontal research field are consistent with a new model of pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial community rather than by select 'periopathogens', such as the 'red complex'. In this polymicrobial synergy, different members or specific gene combinations within the community fulfill distinct roles that converge to shape and stabilize a disease-provoking microbiota. One of the core requirements for a potentially pathogenic community to arise involves the capacity of certain species, termed 'keystone pathogens', to modulate the host response in ways that impair immune surveillance and tip the balance from homeostasis to dysbiosis. Keystone pathogens also elevate the virulence of the entire microbial community through interactive communication with accessory pathogens. Other important core functions for pathogenicity require the expression of diverse molecules (e.g. appropriate adhesins, cognate receptors, proteolytic enzymes and proinflammatory surface structures/ligands), which in combination act as community virulence factors to nutritionally sustain a heterotypic, compatible and proinflammatory microbial community that elicits a non-resolving and tissue-destructive host response. On the basis of the fundamental concepts underlying this model of periodontal pathogenesis, that is, polymicrobial synergy and dysbiosis, we term it the PSD model.

841 citations

Journal ArticleDOI
TL;DR: Evidence is discussed that periodontitis-associated communities are 'inflammo-philic' (=loving or attracted to inflammation) in that they have evolved to not only endure inflammation but also to take advantage of it, likely to control both dysbiosis and disease progression.
Abstract: In periodontitis, dysbiotic microbial communities exhibit synergistic interactions for enhanced protection from host defenses, nutrient acquisition, and persistence in an inflammatory environment. This review discusses evidence that periodontitis-associated communities are 'inflammo-philic' (=loving or attracted to inflammation) in that they have evolved to not only endure inflammation but also to take advantage of it. In this regard, inflammation can drive the selection and enrichment of these pathogenic communities by providing a source of nutrients in the form of tissue breakdown products (e.g. degraded collagen peptides and heme-containing compounds). In contrast, those species that cannot benefit from the altered ecological conditions of the inflammatory environment, or for which host inflammation is detrimental, are likely to be outcompeted. Consistent with the concept that inflammation fosters the growth of dysbiotic microbial communities, the bacterial biomass of human periodontitis-associated biofilms was shown to increase with increasing periodontal inflammation. Conversely, anti-inflammatory treatments in animal models of periodontitis were shown to diminish the periodontal bacterial load, in addition to protecting from bone loss. The selective flourishing of inflammophilic bacteria can perpetuate inflammatory tissue destruction by setting off a 'vicious cycle' for disease progression, in which dysbiosis and inflammation reinforce each other. Therefore, the control of inflammation appears to be central to the treatment of periodontitis, as it is likely to control both dysbiosis and disease progression.

272 citations

Journal ArticleDOI
TL;DR: The pathogen and host cell specificity of these responses are discussed and possible mechanisms by which this oral pathogen can induce and maintain a chronic state of inflammation at sites distant from oral infection are discussed.
Abstract: A hallmark of infection with the gram-negative pathogen Porphyromonas gingivalis is the induction of a chronic inflammatory response. P. gingivalis induces a local chronic inflammatory response that results in oral inflammatory bone destruction, which manifests as periodontal disease. In addition to chronic inflammation at the initial site of infection, mounting evidence has accumulated supporting a role for P. gingivalis-mediated periodontal disease as a risk factor for several systemic diseases including, diabetes, preterm birth, stroke, and atherosclerotic cardiovascular disease. A growing number of in vitro studies have demonstrated that P. gingivalis infection stimulates cell activation commensurate with expected responses paralleling inflammatory atherosclerotic-type responses. Furthermore, various mouse models have been used to examine the ability of P. gingivalis to stimulate chronic inflammatory plaque accumulation and recent studies have pointed to a pivotal role for innate immune signaling via the Toll-like receptors in the chronic inflammation associated with P. gingivalis infection. In this review we discuss the pathogen and host cell specificity of these responses and discuss possible mechanisms by which this oral pathogen can induce and maintain a chronic state of inflammation at sites distant from oral infection.

211 citations

Journal ArticleDOI
TL;DR: The current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen are discussed.
Abstract: Summary Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen.

160 citations

Journal ArticleDOI
TL;DR: A broader perspective about the etiology and pathogenesis of ECC is provided based on previous and current knowledge on biofilm matrix, microbial diversity, and host-microbe interactions, which could have direct implications for developing new approaches for improved risk assessment and prevention of this devastating and costly childhood health condition.
Abstract: Early childhood caries (ECC) is one of the most prevalent infectious diseases affecting children worldwide. ECC is an aggressive form of dental caries, which, left untreated, can result in rapid and extensive cavitation in teeth (rampant caries) that is painful and costly to treat. Furthermore, it affects mostly children from impoverished backgrounds, and so constitutes a major challenge in public health. The disease is a prime example of the consequences arising from complex, dynamic interactions between microorganisms, host, and diet, leading to the establishment of highly pathogenic (cariogenic) biofilms. To date, there are no effective methods to identify those at risk of developing ECC or to control the disease in affected children. Recent advances in deep-sequencing technologies, novel imaging methods, and (meta)proteomics-metabolomics approaches provide an unparalleled potential to reveal new insights to illuminate our current understanding about the etiology and pathogenesis of the disease. In this concise review, we provide a broader perspective about the etiology and pathogenesis of ECC based on previous and current knowledge on biofilm matrix, microbial diversity, and host-microbe interactions, which could have direct implications for developing new approaches for improved risk assessment and prevention of this devastating and costly childhood health condition.

159 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202323
202247
202133
202027
201920
201845