scispace - formally typeset
Search or ask a question
JournalISSN: 1942-4795

Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery 

Wiley-Blackwell
About: Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Computer science & Cluster analysis. It has an ISSN identifier of 1942-4795. Over the lifetime, 414 publications have been published receiving 40640 citations. The journal is also known as: WIREs. & Data mining and knowledge discovery.


Papers
More filters
Journal ArticleDOI
TL;DR: This article gives an introduction to the subject of classification and regression trees by reviewing some widely available algorithms and comparing their capabilities, strengths, and weakness in two examples.
Abstract: Classification and regression trees are machine-learning methods for constructing prediction models from data. The models are obtained by recursively partitioning the data space and fitting a simple prediction model within each partition. As a result, the partitioning can be represented graphically as a decision tree. Classification trees are designed for dependent variables that take a finite number of unordered values, with prediction error measured in terms of misclassification cost. Regression trees are for dependent variables that take continuous or ordered discrete values, with prediction error typically measured by the squared difference between the observed and predicted values. This article gives an introduction to the subject by reviewing some widely available algorithms and comparing their capabilities, strengths, and weakness in two examples. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 14-23 DOI: 10.1002/widm.8 This article is categorized under: Technologies > Classification Technologies > Machine Learning Technologies > Prediction Technologies > Statistical Fundamentals

16,974 citations

Journal ArticleDOI
TL;DR: The concept of ensemble learning is introduced, traditional, novel and state‐of‐the‐art ensemble methods are reviewed and current challenges and trends in the field are discussed.
Abstract: Ensemble methods are considered the state‐of‐the art solution for many machine learning challenges. Such methods improve the predictive performance of a single model by training multiple models and combining their predictions. This paper introduce the concept of ensemble learning, reviews traditional, novel and state‐of‐the‐art ensemble methods and discusses current challenges and trends in the field.

1,381 citations

Journal ArticleDOI
Xinwei Deng1
TL;DR: Experimental design is reviewed here for broad classes of data collection and analysis problems, including: fractioning techniques based on orthogonal arrays, Latin hypercube designs and their variants for computer experimentation, efficient design for data mining and machine learning applications, and sequential design for active learning.
Abstract: Maximizing data information requires careful selection, termed design, of the points at which data are observed. Experimental design is reviewed here for broad classes of data collection and analysis problems, including: fractioning techniques based on orthogonal arrays, Latin hypercube designs and their variants for computer experimentation, efficient design for data mining and machine learning applications, and sequential design for active learning. © 2012 Wiley Periodicals, Inc. © 2012 Wiley Periodicals, Inc.

1,025 citations

Journal ArticleDOI
TL;DR: A recently developed very efficient (linear time) hierarchical clustering algorithm is described, which can also be viewed as a hierarchical grid‐based algorithm.
Abstract: We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations that are available in R and other software environments. We look at hierarchical self-organizing maps and mixture models. We review grid-based clustering, focusing on hierarchical density-based approaches. Finally, we describe a recently developed very efficient (linear time) hierarchical clustering algorithm, which can also be viewed as a hierarchical grid-based algorithm. This review adds to the earlier version, Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview, Wiley Interdiscip Rev: Data Mining Knowl Discov 2012, 2, 86–97. WIREs Data Mining Knowl Discov 2017, 7:e1219. doi: 10.1002/widm.1219 This article is categorized under: Algorithmic Development > Hierarchies and Trees Technologies > Classification Technologies > Structure Discovery and Clustering

977 citations

Journal ArticleDOI
TL;DR: Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results as mentioned in this paper, which is also popularly used in sentiment analysis in recent years.
Abstract: Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

917 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202323
202230
202148
202047
201944
201841