scispace - formally typeset
Open AccessReportDOI

Design of megawatt power level heat pipe reactors

TLDR
In this article, the authors developed a scalable conceptual design for a compact fast-spectrum nuclear reactor and identified scaling issues for compact heat pipe cooled reactors in general, and developed two detailed concepts, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials with a power level of about 5 MWe.
Abstract
An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

read more

Content maybe subject to copyright    Report

LA-UR-15-28840
Approved for public release; distribution is unlimited.
Title: DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS
Author(s): Mcclure, Patrick Ray
Poston, David Irvin
Dasari, Venkateswara Rao
Reid, Robert Stowers
Intended for: Report
Issued: 2015-11-12

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

!
!
!
!
!
!
!
!
!
DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS
Patrick McClure, David Poston, D.V. Rao and Robert Reid
Los Alamos National Laboratory
November 2015

ABSTRACT'................................................................................................................................................'3!
INTRO D U C TIO N '......................................................................................................................................'3!
POTENTIAL'ADVANTAGES'..................................................................................................................'7!
SIZE!..............................................................................................................................................................................!8!
ORIENTATION!............................................................................................................................................................!9!
SAFETY!........................................................................................................................................................................!9!
SELF!REGULATION!(LOAD!FOLLOWING)!...........................................................................................................!10!
SOLID!STATE!............................................................................................................................................................!10!
HEAT!TRANSFER!SURFACE!AREA!MOVED!OUTSIDE!CORE!.............................................................................!10!
MORE!CHOICE!OF!FLUIDS!AND!CONFIGURATIONS!...........................................................................................!11!
HIGH!TEMPERATURES!...........................................................................................................................................!11!
SUMMARY!OF!ADVANTAGES!................................................................................................................................. !11!
ISSUES'O N 'SC A L IN G'............................................................................................................................'12!
LIMITAT ION S !ON!SCALING!....................................................................................................................................!12!
LIMITS!ON !NUMBER!OF!HEAT!PIPES!..................................................................................................................!12!
LIMITS!BASED!ON!ACCIDENT!CONDITIONS!.......................................................................................................!12!
LIMITS!ON !HEAT-PIPE !PERFORMANCE!..............................................................................................................!13!
LIMITS!ON !THERMAL!AND!MECHANICAL!PERFORMANCE!..............................................................................!14!
OTHER!MATERIAL!LIMITATIONS!.........................................................................................................................!15!
OVERCOMING'LIMITS'ON'SCALING'...............................................................................................'16!
CORE!SEGMENTATION!...........................................................................................................................................!16!
HEAT!PIPE !PERFORMANCE!!THE!USE!OF!A!DOUBLE-ENDED!HEAT!PIPE!.................................................!17!
OVERCOMING!THERMAL/MECHANICAL/NEUTRONIC!ISSUES!FOR!NORMAL!AND!ACCIDENT!CONDITIONS
!...................................................................................................................................................................................!18!
DETAILED'ANALYSIS'OF'BLOCK'DESIGNS'(SS_UO2'AND'MOLY_UN)'..................................'19!
QUALITATIVE'TRADE'OFFS'OF'ALTERNATIVE'DESIGNS'.......................................................'28!
RESULTS!OF!ALTERNATIVES!STUDY!...................................................................................................................!35!
FUEL!MATERIAL!.....................................................................................................................................................!35!
BLOCK!MATERIAL!..................................................................................................................................................!35!
RANKING!OF!ALTERNATIVES!................................................................................................................................!36!
OVERALL'LESSONS'LEARNED'AND'RECOMMENDATION'GOING'FORWARD'...................'36!
POSSIBLE!REACTOR!CONCEPT!FOR!REMOTE!LOCATIONS!...............................................................................!36!
APPENDIX'A'..........................................................................................................................................'39!
METHODOLOGY!FOR!ANALYSIS!............................................................................................................................!39!
!

DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS
Patrick McClure, David Poston, D.V. Rao and Robert Reid
Los Alamos National Laboratory
!
Abstract(
An#important#niche#for#nuclear#energy#is#the#need#for#power#at#remote#locations#
removed#from#a#reliable#electrical#grid.##Nuclear#energy#has#potential#applications#at#
strategic#defense#locations,#theaters#of#battle,#remote#communities,#and#emergency#
locations.##With#proper#safeguards,#a#1#to#10-MWe#(megawatt#electric)#mobile#reactor#
system#could#provide#robust,#self-contained,#and#long-term#power#in#any#environment.##
Heat#pipe-cooled#fast-spectrum#nuclear#reactors#have#been#identified#as#a#candidate#
for#these#applications.#Heat#pipe#reactors,#using#alkali#metal#heat#pipes,#are#perfectly#
suited#for#mobile#applications#because#their#nature#is#inherently#simpler,#smaller,#and#
more#reliable#than#“traditional”#reactors.##
The#goal#of#this#project#was#to#develop#a#scalable#conceptual#design#for#a#compact#
reactor#and#to#identify#scaling#issues#for#compact#heat#pipe#cooled#reactors#in#general.####
Toward#this#goal#two#detailed#concepts#were#developed,#the#first#concept#with#more#
conventional#materials#and#a#power#of#about#2#MWe#and#a#the#second#concept#with#
less#conventional#materials#and#a#power#level#of#about#5#MWe.##A#series#of#more#
qualitative#advanced#designs#were#developed#(with#less#detail)#that#show#power#levels#
can#be#pushed#to#approximately#30#MWe.#
Introduc tio n(
Reactors!come!in!a!range!of!sizes.!!The!size!fits!a!variety!of!applications!as!shown!in!
Figure!1.!!Los!Alamos!National!Laboratory!(LANL)!has!traditionally!designed!
reactors!for!applications!in!the!1!to!200!kilowatt!electric!(kWe)!range!as!shown!in!
first!two!columns!in!Figure!1.!!Most!of!LANL’s!designs!have!been!for!space!
applications!for!the!National!Aeronautics!and!Space!Administration!(NASA.)!!Almost!
all!of!these!reactor!designs!are!based!on!a!small!highly!reflected!fast!reactor!concept!
that!use!heat!pipes!as!the!means!of!heat!removal!from!the!reactor!core.!!This!is!an!
ideal!technology!for!space!where!reliability!and!simplicity!are!key!requirements.!!!
LANL!performed!a!study!to!examine!the!issues!of!scaling!heat!pipe!reactor!
technology!to!the!low!megawatt!electric!(MWe)!range!(shown!in!third!column!of!
Figure!1.)!!The!low!MWe!range!is!an!area!that!was!examined!in!the!1950s!through!
1970s!by!the!U.S.!Army!for!power!at!remote!locations!such!as!the!Arctic,!Antarctica!
and!the!Panama!Canal.!!Power!at!remote!locations!removed!from!a!reliable!electrical!
grid!is!a!potential!future!niche!for!nuclear!energy.!!!Remote!locations!include!
strategic!defense!locations!(such!pacific!island!bases),!theaters!of!battle,!remote!

Citations
More filters
Journal ArticleDOI

A two-phase three-field modeling framework for heat pipe application in nuclear reactors

TL;DR: In this article, a comprehensive one-dimensional three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients for the liquid film, vapor, and droplet.
Journal ArticleDOI

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

TL;DR: In this article , a coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core.
Journal ArticleDOI

Startup analyses of a megawatt heat pipe cooled reactor

TL;DR: In this article , a two-dimensional heat pipe model and an open-air Brayton cycle model coupled to the Heat Pipe Reactor TRANsient analysis code, HPRTRAN, were used to analyze a megawatt heat pipe reactor.
Journal ArticleDOI

Design Optimization of Gap Distance for the Capillary Limitation of a Heat Pipe with Annular-Type Wick Structure

TL;DR: In this paper , an experimental investigation was conducted on the rising height and contact angle of fluid in an annular wick-type heat pipe, where a small gap between the wick structure and tube wall compensated for the pressure drop along with the porous media and created additional capillary force.
ReportDOI

Updates and Verifications of the PROTEUS Suite in FY19

TL;DR: The results are shown in the table below, which summarizes the results of the studies carried out at the 2015 USGS workshop on quantitative hazard assessments of earthquake-triggered landsliding and liquefaction in the Czech Republic.
Frequently Asked Questions (1)
Q1. What contributions have the authors mentioned in the paper "Design of megawatt power level heat pipe reactors" ?

McClure et al. this paper presented a study to examine the issues of scaling heat pipe reactor technology to the low megawatt electric ( MWe ) range ( shown in third column of Figure 1 ).