scispace - formally typeset
Open AccessJournal ArticleDOI

Dynamic Scaling of Growing Interfaces

TLDR
A model is proposed for the evolution of the profile of a growing interface that exhibits nontrivial relaxation patterns, and the exact dynamic scaling form obtained for a one-dimensional interface is in excellent agreement with previous numerical simulations.
Abstract
A model is proposed for the evolution of the profile of a growing interface. The deterministic growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is studied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional interface is in excellent agreement with previous numerical simulations. Predictions are made for more dimensions.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Stochastic Equations in Infinite Dimensions

TL;DR: In this paper, the existence and uniqueness of nonlinear equations with additive and multiplicative noise was investigated. But the authors focused on the uniqueness of solutions and not on the properties of solutions.
Journal ArticleDOI

Non-equilibrium critical phenomena and phase transitions into absorbing states

TL;DR: In this article, a review of recent developments in non-equilibrium statistical physics is presented, focusing on phase transitions from fluctuating phases into absorbing states, the universality class of directed percolation is investigated in detail.
Journal ArticleDOI

Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States

TL;DR: In this article, a review of recent developments in nonequilibrium statistical physics is presented, focusing on phase transitions from fluctuating phases into absorbing states, and several examples of absorbing-state transitions which do not belong to the directed percolation universality class are discussed.
Journal ArticleDOI

Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics

TL;DR: Kinetic interfaces form the basis of a fascinating, interdisciplinary branch of statistical mechanics as mentioned in this paper, which can be unified via an intriguing nonlinear stochastic partial differential equation whose consequences and generalizations have mobilized a sizeable community of physicists concerned with a statistical description of kinetically roughened surfaces.
Journal ArticleDOI

Flow phenomena in rocks : from continuum models to fractals, percolation, cellular automata, and simulated annealing

TL;DR: In this article, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible and immiscible displacement processes in reservoir rocks are reviewed and discussed, and two different modeling approaches to these phenomena are compared.
Related Papers (5)