scispace - formally typeset
Open AccessBook

Graph Algorithms

Shimon Even
TLDR
A thoroughly revised second edition of Shimon Even's Graph Algorithms, with a foreword by Richard M. Karp and notes by Andrew V Goldberg, explains algorithms in a formal but simple language with a direct and intuitive presentation.
Abstract
Shimon Even's Graph Algorithms, published in 1979, was a seminal introductory book on algorithms read by everyone engaged in the field. This thoroughly revised second edition, with a foreword by Richard M. Karp and notes by Andrew V. Goldberg, continues the exceptional presentation from the first edition and explains algorithms in a formal but simple language with a direct and intuitive presentation. The book begins by covering basic material, including graphs and shortest paths, trees, depth-first-search, and breadth-first search. The main part of the book is devoted to network flows and applications of network flows, and it ends with chapters on planar graphs and testing graph planarity.

read more

Citations
More filters
Book

Digraphs Theory Algorithms And Applications

TL;DR: Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science, and it will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.
Journal ArticleDOI

A new approach to the maximum-flow problem

TL;DR: An alternative method based on the preflow concept of Karzanov, which runs as fast as any other known method on dense graphs, achieving an O(n) time bound on an n-vertex graph and faster on graphs of moderate density.
Book

Handbook of Constraint Programming

TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Proceedings ArticleDOI

A new approach to the maximum flow problem

TL;DR: By incorporating the dynamic tree data structure of Sleator and Tarjan, a version of the algorithm running in O(nm log(n'/m)) time on an n-vertex, m-edge graph is obtained, as fast as any known method for any graph density and faster on graphs of moderate density.
Book

The Algorithm Design Manual

TL;DR: This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency.