scispace - formally typeset
Open AccessPosted Content

Morphomics via Next-generation Electron Microscopy

Reads0
Chats0
TLDR
In this article, the authors discuss the technological and analytical advances which have arisen from the need to analyse nano-scale bioimages, in detail, as well as focusing on state-of-the-art image analysis involving deep learning.
Abstract
The living body is composed of innumerable fine and complex structures and although these structures have been studied in the past, a vast amount of information pertaining to them still remains unknown. When attempting to observe these ultra-structures, the use of electron microscopy (EM) has become indispensable. However, conventional EM settings are limited to a narrow tissue area that can bias observations. Recently, new trends in EM research have emerged that provide coverage of far broader, nano-scale fields of view for two-dimensional wide areas and three-dimensional large volumes. Together with cutting-edge bioimage informatics conducted via deep learning, such techniques have accelerated the quantification of complex morphological images. Moreover, these advances have led to the comprehensive acquisition and quantification of cellular morphology, which is now treated as a new omics science termed 'morphomics'. Moreover, by incorporating these new methodologies, the field of traditional pathology is expected to advance, potentially with the identification of previously unknown structures, quantification of rare events, reclassification of diseases and automatic diagnosis of diseases. In this review, we discuss these technological and analytical advances, which have arisen from the need to analyse nano-scale bioimages, in detail, as well as focusing on state-of-art image analysis involving deep learning.

read more

References
More filters
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Journal ArticleDOI

THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY

TL;DR: The stain reported here differs from previous alkaline lead stains in that the chelating agent, citrate, is in sufficient excess to sequester all lead present, and is less likely to contaminate sections.
Proceedings ArticleDOI

Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks

TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Journal ArticleDOI

Improvements in epoxy resin embedding methods.

TL;DR: Epoxy embedding methods of Glauert and Kushida have been modified so as to yield rapid, reproducible, and convenientembedding methods for electron microscopy.
Journal ArticleDOI

A survey on deep learning in medical image analysis

TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.