scispace - formally typeset
Open AccessBook ChapterDOI

SSD: Single Shot MultiBox Detector

TLDR
SSD as mentioned in this paper discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, and combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
Abstract
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at this https URL .

read more

Citations
More filters
Posted Content

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

TL;DR: This work introduces two simple global hyper-parameters that efficiently trade off between latency and accuracy and demonstrates the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
Posted Content

YOLOv3: An Incremental Improvement.

TL;DR: The authors present some updates to YOLO!
Proceedings ArticleDOI

Focal Loss for Dense Object Detection

TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Posted Content

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

TL;DR: DeepLab as discussed by the authors proposes atrous spatial pyramid pooling (ASPP) to segment objects at multiple scales by probing an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views.
Proceedings ArticleDOI

YOLO9000: Better, Faster, Stronger

TL;DR: YOLO9000 as discussed by the authors is a state-of-the-art real-time object detection system that can detect over 9000 object categories in real time using a novel multi-scale training method, offering an easy tradeoff between speed and accuracy.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)