scispace - formally typeset
Open AccessOtherDOI

Tectonics of the Indonesian region

Warren Hamilton
- Vol. 1078, pp 1-345
TLDR
The plate-tectonic evolution of a region can be deduced by following the as-sumptions that subduction zones are characterized by ophiolite, melange, wildflysch, and blueschist, that intermediate and silicic calc-alkaline igneous rocks form above Benioff zones, and that truncations of orogenic belts indicate rifting as mentioned in this paper.
Abstract
The plate-tectonic evolution of a region can be deduced by following the as­ sumptions that subduction zones are characterized by ophiolite, melange, wildflysch, and blueschist, that intermediate and silicic calc-alkaline igneous rocks form above Benioff zones, and that truncations of orogenic belts indicate rifting. Interrelatioships provide cross­ checks, as do marine geophysical data. Southeast Asia and "Sundaland" are an aggregate of small continental fragments. Late Paleozoic subduction westward beneath Malaya and Thailand (recorded by granites in eastern Malaya, and by melanges in western Laos and Cambodia) ended when Indochina collided with them. Early and Middle Triassic subduction was eastward, beneath the west side of the aggregate. Late Triassic and Jurassic subduction from the north ended in collision of the aggregate with China. Early Cretaceous subduction was again from the west. Late Cretaceous subduction was beneath the east side of the aggregate and followed continental rifting there. Cenozoic subduction, from the west once more, ended in the north when the aggregate collided with India, but subduction still continues in the south. Borneo similarly reflects changing subduction patterns. The Philippines, Sulawesi, and Halmahera consist wholly of upper Mesozoic(?) and Cenozoic island-arc subduction and magmatic complexes and lack old continental founda­ tions. The scrambled fragments of the Philippines came from several arc systems, including two extending to Borneo. Sulawesi and Halmahera record primarily subduction from the east and may be rifted and contorted fragments initially continuous with southeast Borneo and central Java. In the early Tertiary, Australia and New Guinea, which then had a stable-shelf northern margin, moved northward until they collided with a southward-migrating island arc, behind which had formed the Caroline oceanic plate. Late Cenozoic tectonics in New Guinea have been dominated by southward subduction fo the Caroline oceanic plate beneath the Austra­ lian New Guinea continent, and by left-lateral strikeslip faulting. Such faulting tore the Sula Islands from northwest New Buinea and carried them to Sulawesi. The islands of the outer Banda arc are formed of melanges of the shallow-water sedi­ ments of the New Guinea and Australian continental shelf, which is now disappearing be­ neath the active arc.

read more

Citations
More filters
Journal ArticleDOI

The chemical composition of subducting sediment and its consequences for the crust and mantle

TL;DR: This article evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions, and then used these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust.
Journal ArticleDOI

Tethyan evolution of Turkey: A plate tectonic approach

TL;DR: The Karakaya marginal sea was already closed by earliest Jurassic times because early Jurassic sediments unconformably overlie its deformed lithologies as discussed by the authors, and it was closed by collision of the Bitlis-Poturge fragment with Arabia.
Journal ArticleDOI

Mechanics of fold-and-thrust belts and accretionary wedges

TL;DR: In this article, a simple analytical theory that predicts the critical tapers of subaerial and submarine Coulomb wedges is developed and tested quantitatively in three ways: First, laboratory model experiments with dry sand match the theory.
Journal ArticleDOI

Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations

TL;DR: In this article, a model for the Cenozoic development of the region of SE Asia and the SW Pacific is presented and its implications are discussed, accompanied by computer animations in a variety of formats.