scispace - formally typeset
Open AccessBook

The Chemistry of Linear Oligopyrroles and Bile Pigments

Heinz Falk
Reads0
Chats0
TLDR
In this article, the authors present a list of structural and structural aspects of linear Oligopyrroles, including the following: 5.1.1, 5.2.3.
Abstract
1. Introduction.- 2. Nomenclature.- 3. Occurrence, Formation, and Importance.- 4. Historical Aspects.- 5. Structure and Stereochemistry.- 5.1. General Considerations.- 5.1.1. Definitions.- Constitution.- Tautomerism.- Configuration.- Conformation.- Association.- 5.1.2. Energetics, Interconversions, Interdependencies.- 5.1.3. Methods of Structural Analysis.- Crystalline Materials.- Amorphous Materials.- Solutions.- 5.1.4. Principal Considerations on Structural Aspects of Linear Oligopyrroles.- Bipyrroles.- Bipyrrolylidenes.- Dipyrrins (Pyrromethenes).- Dipyrrinones (Pyrromethenones).- 5,10-Dihydrodipyrrins (Dipyrrylmethanes).- Dihydrodipyrrinones (Dihydropyrromethenones).- Tetrahydrodipyrrinones (Tetrahydropyrromethenones).- Prodigiosenes.- Tripyrrinones.- 1,19-Dioxobilins.- Dihydrobilins: 1,19-Dioxobiladienes-ac.- Dihydrobilins: 1,19-Dioxobiladienes-ab.- Dihydrobilins:1,19-Dioxo-2,3-dihydrobilins.- Tetrahydrobilins: 1,19-Dioxobilenes-b.- Tetrahydrobilins: 1,19-Dioxo-2,3-dihydrobiladienes-ab.- Hexahydrobilins: 1,19-Dioxobilanes.- Hexahydrobilins: Bilanes.- Secocorrins.- 1,19-Dioxo-10-nor-bilins and 1,19-Dioxo-10-nor-biladienes-ac.- Pentapyrrins.- 5.2. Structural Aspects of Linear Dipyrroles.- 5.2.1. Bipyrroles, Bipyrrolylidenes, and Analoga.- 5.2.2. Dipyrrins (Pyrromethenes).- 5.2.3. Dipyrrinones (Pyrromethenones) and Analoga.- 5.2.4. 5,10-Dihydrodipyrrins (Dipyrrylmethanes).- 5.2.5. Dihydrodipyrrinones (Dihydropyrromethenones).- 5.2.6. Tetrahydrodipyrrinones (Tetrahydropyrromethenones).- 5.3. Structural Aspects of Linear Tripyrroles.- 5.3.1. Terpyrroles.- 5.3.2. Prodigiosenes.- 5.3.3. Tripyrrinones and Analoga.- 5.4. Structural Aspects of Linear Tetrapyrroles.- 5.4.1. 1,19-Dioxobilins and Bilins.- 5.4.2. Dihydrobilins: 1,19-Dioxo-2,3-dihydrobilins.- 5.4.3. Dihydrobilins: 1,19-Dioxobiladienes-ac.- 5.4.4. Dihydrobilins: 1,19-Dioxobiladienes-ab.- 5.4.5. Tetrahydrobilins: 1,19-Dioxo-2,3-dihydrobiladienes-ab.- 5.4.6. Tetrahydrobilins: 1,19-Dioxobilenes-b.- 5.4.7. Tetrahydrobilins: Secocorphins.- 5.4.8. Hexa- and Octahydrobilins.- 5.4.9. Secocorrins.- 5.4.10. 1,19-Dioxo-l0-nor- Bilins and Biladienes-ac.- 5.5. Structural Aspects of Linear Oligopyrroles Containing Five or More Rings.- 5.5.1. Pentapyrrins.- 5.5.2. Hexapyrrins and Higher Homologues.- 5.5.3. Polypyrrole.- 6. Synthesis.- 6.1. Principal Considerations.- 6.2. Synthesis of Linear Dipyrroles.- 6.2.1. Bipyrroles, Bipyrrolylidenes, and Analoga.- 6.2.2. Dipyrrins (Pyrromethenes) and Analoga.- 6.2.3. Dipyrrinones (Pyrromethenones) and Analoga.- 6.2.4. 5,10-Dihydrodipyrrins (Dipyrrylmethanes).- 6.2.5. Dihydrodipyrrinones (Dihydropyrromethenones).- 6.2.6. Tetrahydrodipyrrinones (Tetrahydropyrromethenones).- 6.2.7. Miscellaneous Dipyrroles.- 6.3. Synthesis of Linear Tripyrroles.- 6.4. Synthesis of Linear Tetrapyrroles.- 6.4.1. 1,19-Dioxobilins and Bilins.- 6.4.2. Dihydrobilins: 1,19-Dioxo-2,3-dihydrobilins.- 6.4.3. Dihydrobilins: 1,19-Dioxobiladienes-ac.- 6.4.4. Dihydrobilins: 1,19-Dioxobiladienes-ab.- 6.4.5. Tetrahydrobilins: 1,19-Dioxo-2,3-dihydrobiladienes-ab.- 6.4.6. Tetrahydrobilins: 1,19-Dioxobilenes-b.- 6.4.7. Tetrahydrobilins: Secocorphins.- 6.4.8. Hexahydrobilins and Octahydrobilins.- 6.4.9. Secocorrins.- 6.4.10. 1,19-Dioxo-l0-nor- Bilins and Biladienes-ac.- 6.5. Synthesis of Linear Pentapyrroles and Higher Homologues.- 6.6. Transformations of Functional Groups Attached to Linear Oligopyrroles.- 7. Selected Physical Properties.- 7.1. Crystallization, Melting, Solubility.- 7.2. Light Absorption.- 7.3. Chiroptical Properties.- 7.4. Light Emission.- 7.5. Vibrational Spectroscopy.- 7.6. Nuclear Magnetic Resonance.- 7.7. Mass Spectra.- 8. Reactions.- 8.1. Photochemistry.- 8.2. Protonation - Deprotonation.- 8.3. Coordination (Carrier Mediated Transport).- 8.4. Nucleophilic, Electrophilic, and Radical Reactivity of Linear Oligopyrroles.- 8.5. Substitution Reactions.- 8.6. Addition Reactions.- 8.7. Skeletal Transformations.- 8.8. Reduction - Oxidation.- 8.9. Linear Oligopyrroles as Catalysts.- References.- Author Index.

read more

Citations
More filters
Journal ArticleDOI

Phytochrome structure and signaling mechanisms

TL;DR: The discovery of new bacterial and cyanobacterial members of the phytochrome family within the last decade has greatly aided biochemical and structural characterization of this family, with the first crystal structure of a bacteriophytochrome photosensory core appearing in 2005.
Journal ArticleDOI

Harnessing phytochrome's glowing potential

TL;DR: In this paper, a tyrosine-to-histidine mutation was revealed to transform a cyanobacterial phytochrome into an intensely red fluorescent biliprotein, which is conserved in all members of the PHYtochrome superfamily, implicating direct participation in the primary photoprocess.
Journal ArticleDOI

Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

TL;DR: Dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes.
Journal ArticleDOI

Biliprotein maturation: the chromophore attachment.

TL;DR: Methodological advances in the process, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light‐harvesting system, on applications in basic research such as protein folding, and on the use of phyCobiliproteins for labelling.
Journal ArticleDOI

Characterization of recombinant phytochrome from the cyanobacterium Synechocystis

TL;DR: The purity and solubility of the recombinant Synechocystis gene product make it a most attractive model for molecular studies of phytochrome, including x-ray crystallography.
Related Papers (5)