scispace - formally typeset
Search or ask a question

Showing papers on "Aquatic locomotion published in 1997"


Journal ArticleDOI
TL;DR: Comparison of undulatory movements among diverse anguilliform swimmers suggests substantial variation across taxa in parameters such as tailbeat amplitude and in the relationship between tailbeat frequency and swimming speed.
Abstract: Many workers interested in the mechanics and kinematics of undulatory aquatic locomotion have examined swimming in fishes that use a carangiform or subcarangiform mode. Few empirical data exist describing and quantifying the movements of elongate animals using an anguilliform mode of swimming. Using high-speed video, I examine the axial undulatory kinematics of an elongate salamander, Siren intermedia, in order to provide data on how patterns of movement during swimming vary with body position and swimming speed. In addition, swimming kinematics are compared with those of other elongate vertebrates to assess the similarity of undulatory movements within the anguilliform locomotor mode. In Siren, most kinematic patterns vary with longitudinal position. Tailbeat period and frequency, stride length, Froude efficiency and the lateral velocity and angle of attack of tail segments all vary significantly with swimming speed. Although swimming speed does not show a statistically significant effect on kinematic variables such as maximum undulatory amplitude (which increases non-linearly along the body), intervertebral flexion and path angle, examination of the data suggests that speed probably has subtle and site-specific effects on these variables which are not detected here owing to the small sample size. Maximum lateral displacement and flexion do not coincide in time within a given tailbeat cycle. Furthermore, the maximum orientation (angle with respect to the animal's direction of forward movement) and lateral velocity of tail segments also do not coincide in time. Comparison of undulatory movements among diverse anguilliform swimmers suggests substantial variation across taxa in parameters such as tailbeat amplitude and in the relationship between tailbeat frequency and swimming speed. This variation is probably due, in part, to external morphological differences in the shape of the trunk and tail among these taxa.

81 citations


Journal ArticleDOI
TL;DR: The efficient aquatic locomotion of the platypus results from its specialised rowing mode in conjunction with enlarged and flexible forefeet for high thrust generation and a behavioral strategy that reduces drag and energy cost by submerged swimming.
Abstract: The metabolism of swimming in the platypus Ornithorhynchus anatinus Shaw was studied by measurement of oxygen consumption in a recirculating water flume. Platypuses swam against a constant water current of 0.45‐1.0 m s -1 . Animals used a rowing stroke and alternated bouts of surface and submerged swimming. Metabolic rate remained constant over the range of swimming speeds tested. The cost of transport decreased with increasing velocity to a minimum of 0.51 at 1.0 m s -1 . Metabolic rate and cost of transport for the platypus were lower than values for semiaquatic mammals that swim at the water surface using a paddling mode. However, relative to transport costs for fish, the platypus utilized energy at a similar level to highly derived aquatic mammals that use submerged swimming modes. The efficient aquatic locomotion of the platypus results from its specialised rowing mode in conjunction with enlarged and flexible forefeet for high thrust generation and a behavioral strategy that reduces drag and energy cost by submerged swimming. Summary

34 citations