scispace - formally typeset
Search or ask a question

Showing papers on "Lovastatin published in 1983"


Journal ArticleDOI
TL;DR: The current data suggest that mevinolin alone ormevinolin plus bile acid depletion (i.e., ileal bypass or colestipol therapy) decreases plasma LDL levels primarily by raising the number of LDL receptors and, thus, enhancing the removal of LDL from plasma.
Abstract: In subject with heterozygous familial hypercholesterolemia (FH), a 50% deficiency of receptors for plasma low density lipoprotein (LDL) impairs the removal of LDL from plasma and produces hypercholesterolemia. In these patients mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, blocks cholesterol synthesis and lowers plasma LDL levels. To determine the mechanism for the LDL-lowering effect, we administered 131I-labeled LDL intravenously to six FH heterozygotes before and during treatment with mevinolin and calculated the apparent fractional catabolic rate (FCR) and synthetic rate for LDL. After mevinolin treatment, the mean plasma LDL-cholesterol level declined from 262 to 191 mg/dl (27% decrease), the mean FCR for 131I-labeled LDL increased from 0.30 to 0.41 pools per day (37% increase), and the mean calculated synthetic rate for LDL-protein did not change significantly. In one of FH heterozygote with an ileal bypass and in another who received colestipol, the addition of mevinolin caused, respectively, a 41% and 60% decrease in plasma LDL levels and a 60% and 100% increase in the FCR for plasma LDL. The contribution of receptor-dependent pathways to the FCR for plasma LDL was estimated in three FH heterozygotes by simultaneous measurements of the FCR for native 131I-labeled LDL and 125I-labeled glucosylated LDL, which does not bind to LDL receptors. Whereas the removal rate for native LDL increased after mevinolin treatment, the removal rate for glucosylated LDL did not change. The current data suggest that mevinolin alone or mevinolin plus bile acid depletion (i.e., ileal bypass or colestipol therapy) decreases plasma LDL levels primarily by raising the number of LDL receptors and, thus, enhancing the removal of LDL from plasma.

526 citations


Journal ArticleDOI
TL;DR: Under some physiological conditions, a deficiency of biosynthetic cholesterol or of a related precursor may lead to an increase in the activity of HMG-CoA reductase, and oleate itself was capable of replacing carbohydrate as the major source of carbon for sterol synthesis.
Abstract: 1. Compactin, (-)-hydroxycitrate and dexamethasone gave rise to a decrease in the rate of cholesterol production in hepatocytes from fed rats by interfering with the flow of substrate into the sterol biosynthetic pathway. The cells responded to the deficit of biosynthetic sterol by increasing the activity of hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase). 2. Compactin and (-)-hydroxycitrate gave similar results in hepatocytes from rats starved for 24 h but in this case dexamethasone had no significant effect. 3. Exogenous oleate interferes with the production of carbohydrate-derived acetyl-CoA and also gives rise initially to opposing effects on the rate of sterol synthesis and HMG-CoA reductase activity. Over a longer period, however, oleate itself was capable of replacing carbohydrate as the major source of carbon for sterol synthesis. 4. The increase in HMG-CoA reductase activity observed when liver cells were incubated in the presence of compactin, (-)-hydroxycitrate or oleate could be partially reversed by the simultaneous presence of glucagon. 5. Under some physiological conditions, a deficiency of biosynthetic cholesterol or of a related precursor may lead to an increase in the activity of HMG-CoA reductase.

34 citations