scispace - formally typeset
Search or ask a question

Showing papers on "Noisy-channel coding theorem published in 1976"


Journal ArticleDOI
TL;DR: The coupling of Forney's rigorization of Shannon's random-coding/typical-sequence approach to block coding theorems with the strong Rohlin-Kakutani Theorem of ergodic theory is used to obtain a sliding-block coding theorem, holding for stationary nonblock structures, as well as for block codes.
Abstract: Sliding-block codes are nonblock coding structures consisting of discrete-time time-invariant possibly nonlinear filters. They are equivalent to time-invariant trellis codes. The coupling of Forney's rigorization of Shannon's random-coding/typical-sequence approach to block coding theorems with the strong Rohlin-Kakutani Theorem of ergodic theory is used to obtain a sliding-block coding theorem for ergodic sources and discrete memoryless noisy channels. Combining this result with a theorem on sliding-block source coding with a fidelity criterion yields a sliding-block information transmission theorem. Thus, the basic existence theorems of information theory hold for stationary nonblock structures, as well as for block codes.

29 citations