scispace - formally typeset
Search or ask a question

Showing papers on "Pyrolysis published in 2024"


Journal ArticleDOI
01 May 2024
TL;DR: In this paper , ferrihydrite was coprecipitated with biochar to investigate how ferrighydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V).
Abstract: The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.

Journal ArticleDOI
TL;DR: In this article , six common types of fallen leaves on the campus were pyrolyzed at 300 °C. The obtained biochars were characterized and the adsorption mechanisms of lead (Pb) by the fallen leaf biochar were investigated.
Abstract: Realizing campus sustainability requires the environmental-friendly and economical treatment of tremendous fallen leaves. Producing fallen leaf biochar at a low temperature is a candidate approach. In this study, six common types of fallen leaves on the campus were pyrolyzed at 300 °C. The obtained biochars were characterized and the adsorption mechanisms of lead (Pb) by the fallen leaf biochars were investigated. The adsorption capacity of leaf biochar for Pb was relatively high, up to 209 mg/g (Yulania denudata leaf biochar). Adsorption of Pb onto active sites was the rate-limiting step for most leaf biochars. But for Platanus leaf biochar, intraparticle diffusion of Pb2+ dominated owing to the lowest adsorption capacity. However, the highest exchangeable Pb fraction (27%) indicated its potential for removing aqueous Pb2+. Ginkgo and Prunus cerasifera leaf biochar immobilized Pb by surface complexation and precipitation as lead oxalate. Hence, they were suitable for soil heavy metal remediation. This study shed the light on the sustainable utilization of campus fallen leaves and the application of fallen leaf biochars in heavy metal remediation.