scispace - formally typeset
Search or ask a question

Showing papers on "Regulatory T cell published in 1997"



Journal ArticleDOI
TL;DR: It is concluded that the suppressive effects of mercury previously observed in EAE and Heymann's nephritis of LEW rats do not occur in "spontaneous" autoimmune IDDM and thyroiditis of BB rats, and immune suppression caused by HgCl2 cannot be considered a common phenomenon, but may be a genetically determined characteristic of Lew rats.
Abstract: Repeated exposure of Brown Norway (BN) rats to relatively low doses of HgCl2 induces autoantibodies to renal antigens (e.g., laminin) and a membranous glomerulonephropathy characterized by proteinuria. In contrast, Lewis (LEW) rats are "resistant" to the autoimmune effects of mercury and, when exposed to this metal, are protected against experimental autoimmune encephalomyelitis (EAE) and Heymann's nephritis. To date, there is no information on "suppressive" effects of mercury in naturally occurring (so-called "spontaneous") rat models of autoimmune disease. Therefore, we have administered HgCl2 to diabetes-prone (DP) BB rats, animals that spontaneously develop both insulin-dependent diabetes mellitus (IDDM) and thyroiditis. We found that DP rats treated with mercury or water for a period of 40-125 days developed autoantibodies to thyroglobulin, with a higher incidence in HgCl2-injected animals (92% vs. 56% in H2O-injected controls). A novel finding of our study was the detection of autoantibodies to laminin in the same rats, again with an increased incidence after HgCl2 treatment (83% vs. 44%). IgG2a was the most frequently detected isotype of antibodies to laminin, followed by IgG1, IgG2b and IgG2c. The IgG isotype profile suggests that treatment with HgCl2 may activate both Th1 and Th2 lymphocytes in BB rats. In spite of these stimulatory effects on autoantibody responses, we found that there was no difference in the incidence of IDDM and thyroiditis between HgCl2-treated and control animals. We conclude that the suppressive effects of mercury previously observed in EAE and Heymann's nephritis of LEW rats do not occur in "spontaneous" autoimmune IDDM and thyroiditis of BB rats. Therefore, immune suppression caused by HgCl2 cannot be considered a common phenomenon, but may be a genetically determined characteristic of LEW rats, possibly related to a specific or unique cytokine profile of this particular rat strain. In contrast, while mercury does not seem to recruit, induce or rescue regulatory T cell function in DP rats, it does stimulate autoantibody responses in these animals.

11 citations