scispace - formally typeset
Search or ask a question

Showing papers on "Tobamovirus published in 1982"


Journal ArticleDOI
TL;DR: Ullucus tuberosus plants from 12 locations in the Andean highlands of Peru and Bolivia contained complexes of either three or four viruses, with the possible exception of UMV, which differed from viruses reported previously to infect three other vegetatively propagated Andean crops.
Abstract: SUMMARY Ullucus tuberosus (Basellaceae) plants from 12 locations in the Andean highlands of Peru and Bolivia contained complexes of either three or four viruses. Specimens from six sites in Peru contained a potexvirus, a tobamovirus, a potyvirus and a comovirus, but those from another location lacked the potexvirus. All samples from five sites in Bolivia lacked the tobamovirus. The potexvirus (PMV/U) is a strain of papaya mosaic virus differing slightly from the type strain (PMV/T) in inducing milder symptoms in some common hosts and failing to infect a few other species. It symptomlessly infected U. tuberosus, and infected 15 of 29 species from seven of nine other families. PMV/U showed a close serological relationship to PMV/T and to boussingaultia mosaic virus and a distant relationship to commelina virus X, but it is apparently unrelated to any of ten other potexviruses. The tobamovirus (TMV/U) induced symptomless or inconspicuous infection in U. tuberosus, and infected 21 of 30 species from six of eight other families. It showed a very distant serological relationship to some strains of ribgrass mosaic, tobacco mosaic and tomato mosaic viruses, but failed to react with antisera to cucumber green mottle mosaic, frangipani mosaic, odontoglossum ringspot and sunn-hemp mosaic viruses. The potyvirus, tentatively designated ullucus mosaic virus (UMV), alone in U. tuberosus induced leaf symptoms indistinguishable from the chlorotic mottling and distortion found in naturally infected plants. UMV infected 12 of 20 species from four other families, and was transmitted in the non-persistent manner by Myzus persicae. It showed a distant serological relationship to only two (bidens mottle and alstroemeria mosaic) of 25 members or possible members of the potyvirus group tested. Some hosts and properties of the comovirus are described in an accompanying paper. None of the four viruses infected potato (Solanum tuberosum) and, with the possible exception of UMV, they differed from viruses reported previously to infect three other vegetatively propagated Andean crops (Oxalis tuberosa, Arracacia xanthorrhiza and Tropaeolum tuberosum).

21 citations


Journal ArticleDOI
TL;DR: In this paper, the authors showed that the rapid elongation in the reconstitution of a common strain (OM) following the assembly initiation is the outcome of preferential incorporation of TMV subunit protein.
Abstract: Tobacco mosaic virus (TMV) was reconstituted from the RNA of a common strain (OM) and the protein of a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is a member of the tobamovirus group. In 0.25 M phosphate buffer at 25 degrees C, CGMMV-W protein existed mainly as 21S aggregates. When this protein was mixed with OM RNA, complexes of short rods were formed but further elongation did not occur. After the addition of subunits in 0.1 M phosphate buffer at 25 degrees C, elongation to the 5' end of the RNA proceeded as fast as in the case of reconstitution with the usual equilibrium "disk preparation" of OM protein, to give 260-nm intermediates in the first 5-7 min. The results proved that the rapid elongation we previously observed in the reconstitution of TMV-OM following the assembly initiation is the outcome of preferential incorporation of TMV subunit protein. Either preformed 21S aggregate or the subunit of CGMMV protein was added to the 260-nm intermediate. Elongation to the 3' end of the RNA was investigated in 0.1 M phosphate buffer at 25 degrees C by measuring the distribution of rod length and the RNase-resistant infectivity. The results showed that the 21S aggregate is kinetically favored as the protein source during the slow elongation process.

10 citations