scispace - formally typeset
Search or ask a question
JournalISSN: 0003-4746

Annals of Applied Biology 

Wiley-Blackwell
About: Annals of Applied Biology is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Population & Plant virus. It has an ISSN identifier of 0003-4746. Over the lifetime, 8939 publications have been published receiving 216378 citations.
Topics: Population, Plant virus, Virus, Aphid, Germination


Papers
More filters
Journal ArticleDOI
TL;DR: A quantitative analysis of the toxicity of drugs or poisons applied jointly requires that they be administered at several dosages in mixtures containing fixed proportions of the ingredients, and the presence of synergism is indicated.
Abstract: Summary A quantitative analysis of the toxicity of drugs or poisons applied jointly requires that they be administered at several dosages in mixtures containing fixed proportions of the ingredients. From a study of the dosage-mortality curves for several such mixtures, preferably in comparison with equivalent curves for the isolated active ingredients, most cases of combined action can be classified into one of three types: (1) The first type is that in which the constituents act independently and diversely, so that the toxicity of any combination can be predicted from that of the isolated components and from the association of susceptibilities to the two components. The coefficient of association can be measured experimentally and should be constant at all proportions of the ingredients. When high, the toxicity of the mixture is reduced. The form of the dosage-mortality curve has been examined for several hypothetical mixtures. Whenever the curves for the two constituents were assumed to differ in slope, there was a relatively abrupt bend in the curve for the mixture, the rectilinear segments above and below the break approaching in slope the values for the original constituents. This observation indicates that in homogeneous populations the slope of a dosage-mortality curve is of toxicological significance. Since the same numerical relations would be expected if a single poison were to have two independent lethal effects within the animal, there is theoretical basis for fitting the linear segments of a dosage-mortality curve separately when a break occurs after transformation to probits and logarithms. This argument has been extended to time-mortality experiments to explain the smoothly concave curves characteristic of natural mortality. (2) The second type of joint action is that in which the constituents act independently but similarly, so that one ingredient can be substituted at a constant ratio for any proportion of a second without altering the toxicity of the mixture. With homogeneous populations, dosage-mortality curves for the separate ingredients and for all mixtures should be parallel. Although by hypothesis the susceptibility to one ingredient is completely correlated with that to the other, mixtures in this category are more toxic than in the preceding class where association may vary from 0 to 1. The numerical relations have been illustrated by an experiment on the toxicity to the house-fly of solutions containing pyrethrin and rotenone. A mixture with a little less than four equitoxic units of pyrethrin to one of rotenone agreed closely with the definition but one in which the ingredients were about equally balanced showed a significantly greater toxicity than expected on the hypothesis of independent action, indicating the presence of synergism. (3) Synergism forms the third type of joint action, characterized by a toxicity greater than that predicted from studies on the isolated constituents. It is the reverse of antagonism, which has not been considered directly. Two methods are proposed for the analysis of synergism. The more direct is to relate equitoxic dosages of mixture to its percentage composition in terms of the more active ingredient. When both are in logarithms the relation is linear over a useful range of compositions. This procedure preserves the original structure of the experiment, can be extended readily to three or more ingredients and leads to a convenient practical result. Theoretically it is less satisfactory than a second method in which for equitoxic dosages of each mixture the content of one ingredient (A) is related to the content of the other (B.) The equation which satisfies this relation most completely is (1 +k1A) Bi=k2, where the three constants are computed from the experimental data. When the exponent i is equal to 1, only two constants need be determined and their product, k1k2, is proposed as a measure of the intensity of synergism. The synergism between a nitro-phenol and petroleum oil has been computed by both methods. For mixtures containing from 0·5 to 5% of the nitrophenol, the deposit of mixture (Dc) killing 98 % of the eggs of a plant bug could be expressed adequately in terms of the percentage of the phenol (Q) as log Dc= 0·687-0·307 log Q, for 98% of overwintering San Jose scale as log Dc= 0·472 -0·363 log Q. All observations, including those for a 0·1 % mixture and for oil alone which were omitted in the first method, could be fitted satisfactorily in terms of the separate ingredients. For plant bug eggs at LD50, (1+25·6A) B= 4·29 and for San Jose scale (1 + 66·7 A) B= 2·73: in both cases i= 1 and the intensity of synergism 110 and 182 respectively. The full procedure has also been applied to the constituents of seven samples of Derris root. One sample gave an unaccountably low toxicity and was omitted. The log LD 50 of ether extract for the remaining six was related to the percentage composition of two components in the extract, rotenone (A) and dehydro mixture (B.) Since the toxicity of extract could be expressed almost entirely in terms of these particular two constituents, they were then related to each other by the second method. None of the samples contained a very small proportion of one ingredient, so that several equations were equally applicable, one of them being (1+0–714A) B= 56·1, from which the intensity of synergism was 40. The problem of measuring synergism in fumigants has been discussed briefly.

1,970 citations

Journal ArticleDOI
TL;DR: A universal scale using a decimal code for the description of the growth stages of most agricultural crops and weeds is proposed, based on the well-known Zadoks code for cereals.
Abstract: Summary A universal scale (to be known as the BBCH scale) using a decimal code for the description of the growth stages of most agricultural crops and weeds is proposed. The scale and codes are based on the well-known Zadoks code for cereals. Developmentally similar growth stages of different crops are given the same codes. The general scale provides a framework within which more specific scales for individual crops may be constructed. The uniformity of the scale makes it easy to remember and use in agricultural practice and simplifies storage and retrieval in a computer system. A description of the general scale is given followed by specific scales for cereals, rice, maize, oilseed rape, field beans, peas and sunflower. Comparisons with scales currently in use are given where appropriate.

1,569 citations

Journal ArticleDOI
TL;DR: Estimates of spore content of the air can be made, with higher efficiency than by previous traps, at different times of day and thus be more closely correlated with variations in weather.
Abstract: A suction trap has been made in which the spores entering a narrow orifice, directed into the wind, are impacted on a Vaseline-coated microscope slide moved across the orifice at 2 mm./hr. Estimates of spore content of the air can be made, with higher efficiency than by previous traps, at different times of day and thus be more closely correlated with variations in weather. Wind-tunnel tests with spores of Lycopodium clavatum showed maximal and minimal efficiencies of 93.8 and 62.4% respectively, with a suction rate of 10.0 1./min., in the range of wind speeds from 1.5 to 9.3 m./sec.

1,552 citations

Journal ArticleDOI
TL;DR: This sedimentation method extracted as many nematodes from sand and loam as Seinhorst's two-flask and elutriation methods, but in one test extracted fewer Tylenchorhynchus from clay and in another fewer Paratylenchus from Clay than the elutRIation method.
Abstract: SUMMARY When 200 ml. dispersed soil is sedimented from an obliquely rising water current in a simple compartmented tank about three-quarters of the nematodes are extracted. About 95% of the nematodes in the concentrated suspension can be separated finally from mineral and heavy organic particles by centrifugal notation. When mobile nematodes were finally separated from soil particles by paper tissue, this sedimentation method extracted as many nematodes from sand and loam as Seinhorst's two-flask and elutriation methods, but in one test extracted fewer Tylenchorhynchus from clay and in another fewer Paratylenchus from clay than the elutriation method. The method is quicker (4 or 6 instead of 30–45 min.) and easier. Mobile nematodes can be extracted from 300 ml. soil spread out on paper tissue in 23. 33 cm. trays of 8 mesh/cm. phosphor-bronze gauze, just resting on shallow water. The suspension obtained after 24 hr. at 16–18°C. was concentrated to 10–15 ml. without loss by sedimentation in two tapered cylinders, one of 8 cm. bore, the other of 2.6 cm. bore. This method usually extracted significantly more nematodes than the sedimentation, two-flask and elutriation methods.

1,194 citations

Journal ArticleDOI
TL;DR: It is shown that when dosage is inferred from the observed mortality on the assumption that susceptibility is distributed normally, such inferred dosages, in terms of units called probits, give straight lines when plotted against the logarithm of their corresponding observed dosages.
Abstract: Summary. The sigmoid dosage-mortality curve, secured so commonly in toxicity tests upon multicellular organisms, is interpreted as a cumulative normal frequency distribution of the variation among the individuals of a population in their susceptibility to a toxic agent, which susceptibility is inversely proportional to the logarithm of the dose applied. In support of this interpretation is the fact that when dosage is inferred from the observed mortality on the assumption that susceptibility is distributed normally, such inferred dosages, in terms of units called probits, give straight lines when plotted against the logarithm of their corresponding observed dosages. It is shown that this use of the logarithm of the dosage can be interpreted in terms either of the Weber-Fechner law or of the amount of poison fixed by the tissues of the organism. How this transformation to a straight regression line facilitates the precise estimation of the dosage-mortality relationship and its accuracy is considered in detail. Statistical methods are described for taking account of tests which result in 0 or 100 per cent, kill, for giving each determination a weight proportional to its reliability, for computing the position and slope of the transformed dosage-mortality curve, for measuring the goodness of fit of the regression line to the observations by the X2 test, and for calculating the error in position and in slope and their combined effect at any log. dosage. The terminology and procedures are consistent with those used by R. A. Fisher, who has contributed an appendix on the case of zero survivors. Except for a table of common logarithms, all the tables required to utilise the methods described are given either in the present paper or in Fisher's book. A numerical example selected from Strand's experiments upon Tribolium confusum with carbon disulphide has been worked out in detail.

1,003 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202343
202272
2021101
202074
201975
201861