scispace - formally typeset
A

A. L. Hodgkin

Researcher at University of Cambridge

Publications -  42
Citations -  39356

A. L. Hodgkin is an academic researcher from University of Cambridge. The author has contributed to research in topics: Giant axon & Squid. The author has an hindex of 35, co-authored 42 publications receiving 36523 citations. Previous affiliations of A. L. Hodgkin include Marine Biological Laboratory & University of Texas Medical Branch.

Papers
More filters
Journal ArticleDOI

A quantitative description of membrane current and its application to conduction and excitation in nerve

TL;DR: This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre by putting them into mathematical form and showing that they will account for conduction and excitation in quantitative terms.
Journal ArticleDOI

Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo

TL;DR: The identity of the ions which carry the various phases of the membrane current is chiefly concerned with sodium ions, since there is much evidence that the rising phase of the action potential is caused by the entry of these ions.
Journal ArticleDOI

Measurement of current-voltage relations in the membrane of the giant axon of Loligo.

TL;DR: The importance of ionic movements in excitable tissues has been emphasized by a number of recent experiments which are consistent with the theory that nervous conduction depends on a specific increase in permeability which allows sodium ions to move from the more concentrated solution outside a nerve fibre to the more dilute solution inside it.
Journal ArticleDOI

The dual effect of membrane potential on sodium conductance in the giant axon of Loligo

TL;DR: This paper contains a further account of the electrical properties of the giant axon of Loligo and deals with the 'inactivation' process which gradually reduces sodium permeability after it has undergone the initial rise associated with depolarization.