scispace - formally typeset
Search or ask a question

Showing papers by "Adrian Nur published in 2016"



Proceedings ArticleDOI
09 Feb 2016
TL;DR: In this article, the effects of some key parameters of the electrosynthesis on the formation of TiO2 have been investigated, and the homogeneous solution for the electro synthesis of TiCl4 in ethanol solution was obtained.
Abstract: Metal oxide combined with graphite becomes interesting composition. TiO2 is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO2 gravimetric capacity varied within a fairly wide range. TiO2 crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO2 powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis on the formation of TiO2 have been investigated. The combination of graphite and TiO2 particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO2 powders was TiCl4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrod...

3 citations


Proceedings ArticleDOI
09 Feb 2016
TL;DR: In this paper, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated, and the performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was analyzed by XRD (X-Ray Diffraction), and the structure and morphology of the anode film were analyzed by SEM (Scanning Electron Microscope).
Abstract: A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

3 citations