scispace - formally typeset
Search or ask a question

Showing papers by "Ahmad Rifqi Md Zain published in 2023"


Journal ArticleDOI
01 Jan 2023-Polymers
TL;DR: In this paper , superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge.
Abstract: Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge. The Pd-Chit@MnFe2O4 catalyst exhibited high catalytic activity in 4-nitrophenol and 4-nitroaniline reductions, with respective turnover frequencies of 357.1 min−1 and 571.4 min−1, respectively. The catalyst can also be recovered easily by magnetic separation after each reaction. Additionally, the Pd-Chit@MnFe2O4 catalyst performed well in the reductive deprotection of allyl carbamate. Coating the catalyst with chitosan reduced the Pd leaching and its cytotoxicity. Therefore, the catalytic activity of Pd-Chit@MnFe2O4 was proven to be unrestricted in biology conditions.

1 citations


Journal ArticleDOI
01 Feb 2023-Polymers
TL;DR: In this article , the authors used a co-precipitation method to synthesize Fe3O4 nanoparticles for the delivery of sorafenib (SFB) and its effects on cancer cells.
Abstract: Iron oxide nanoparticles are one of the nanocarriers that are suitable for novel drug delivery systems due to low toxicity, biocompatibility, loading capacity, and controlled drug delivery to cancer cells. The purpose of the present study is the synthesis of coated iron oxide nanoparticles for the delivery of sorafenib (SFB) and its effects on cancer cells. In this study, Fe3O4 nanoparticles were synthesized by the co-precipitation method, and then sorafenib was loaded onto PEG@Fe3O4 nanoparticles. FTIR was used to ensure polyethylene glycol (PEG) binding to nanoparticles and loading the drug onto the nanoshells. A comparison of the mean size and the crystalline structure of nanoparticles was performed by TEM, DLS, and X-ray diffraction patterns. Then, cell viability was obtained by the MTT assay for 3T3 and HepG2 cell lines. According to FT-IR results, the presence of O–H and C–H bands at 3427 cm–1 and 1420 cm–1 peak correlate with PEG binding to nanoparticles. XRD pattern showed the cubic spinel structure of trapped magnetite nanoparticles carrying medium. The magnetic properties of nanoparticles were examined by a vibrating-sample magnetometer (VSM). IC50 values at 72 h for treatment with carriers of Fe3O4@PEG nanoparticle for the HepG2 cell line was 15.78 μg/mL (p < 0.05). This study showed that Fe3O4 nanoparticles coated by polyethylene glycol and using them in the drug delivery process could be beneficial for increasing the effect of sorafenib on cancer cells.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors show that the hybrid system of excitons in a nonlinear organic dye layer and a surface plasmon (PSP) mode can be described by employing dark-state in a theory of nonlinear third-order sum-frequency generation (TSFG).
Abstract: A strong coupling regime with dressed states is formed when a propagating surface plasmon (PSP) mode coherently exchanges energy with an ensemble of excitons at a rate faster than the system’s losses. These states are superpositions of superradiance excitons and PSP modes, accompanied by remaining subradiance or ‘dark’ exciton states. Dark-states are ubiquitous, especially in disordered systems, and they rise in number as the number of excitons increases. Here, the ultra-strong coupling regime was experimentally observed with the coupling strength to bare energy as high as g/ Eexciton ∼ 0.23 using a self-antiaggregation organic dye, BOBzBT2 in an Otto-SPR configuration. We show that the hybrid system of excitons in a nonlinear organic dye layer and a PSP mode can be described by employing dark-state in a theory of nonlinear third-order sum-frequency generation (TSFG). Close agreement between the theory and the experiment has been demonstrated. The study opens up a new perspective for establishing a relationship between the optical properties of a third-order nonlinear material and the extent of strong coupling.