scispace - formally typeset
Search or ask a question

Showing papers by "Anders Björklund published in 2021"


Journal ArticleDOI
TL;DR: In this article, homotopic transplantation of mDA neurons into the substantia nigra was investigated in rodent PD models as a way to achieve more complete circuitry repair, and the afferent connectivity of grafts implanted in the nigra matched closely that of the intrinsic mDA system.
Abstract: Cell therapy for Parkinson's disease (PD) is aimed to replace the degenerated midbrain dopamine (mDA) neurons and restore DA neurotransmission in the denervated forebrain targets. A limitation of the intrastriatal grafting approach, which is currently used in clinical trials, is that the mDA neurons are implanted into the target area, in most cases the putamen, and not in the ventral midbrain where they normally reside. This ectopic location of the cells may limit their functionality due to the lack of appropriate afferent regulation from the host. Homotopic transplantation, into the substantia nigra, is now being pursued in rodent PD models as a way to achieve more complete circuitry repair. Intranigral grafts of mDA neurons, derived from human embryonic stem cells, have the capacity to re-establish the nigrostriatal and mesolimbic pathways in their entirety and restore dense functional innervations in striatal, limbic and cortical areas. Tracing of host afferent inputs using the rabies tracing technique shows that the afferent connectivity of grafts implanted in the nigra matches closely that of the intrinsic mDA system, suggesting a degree of circuitry reconstruction that exceeds what has been achieved before. This approach holds great promise, but to match the larger size of the human brain, and the 10 times greater distance between substantia nigra and its forebrain targets, it may be necessary to find ways to improve the growth capacity of the grafted mDA neurons, pointing to a combined approach where growth promoting factors are used to enhance the performance of mDA neuron grafts.

11 citations


Journal ArticleDOI
TL;DR: Kordower et al. as discussed by the authors showed that the level of the Ret signaling receptor was reduced by about 65% relative to non-PD controls, and most severely, up to 80% in nigral neurons containing α-synuclein inclusions, accompanied by impaired signaling downstream of the ret receptor.
Abstract: In two recent postmortem studies, Jeffrey Kordower and colleagues report new findings that open up for an interesting discussion on the status of GDNF/NRTN signaling in patients with Parkinson's disease (PD), adding an interesting perspective on the, admittedly very limited, signs of restorative effects previously seen in GDNF/NRTN-treated patients. Their new findings show that the level of the GDNF signaling receptor Ret is overall reduced by about 65% relative to non-PD controls, and most severely, up to 80%, in nigral neurons containing α-synuclein inclusions, accompanied by impaired signaling downstream of the Ret receptor. Notably, however, the vast majority of the remaining nigral neurons retained a low level of Ret expression, and hence a threshold level of signaling. Further observations made in two patients who had received AAV-NRTN gene therapy 8-10 years earlier suggest the intriguing possibility that NRTN is able to restore Ret expression and upregulate its own signaling pathway. This "wind-up" mechanism, which is likely to depend on an interaction with dopaminergic transcription factor Nurr1, has therapeutic potential and should encourage renewed efforts to turn GDNF/NRTN therapy into success, once the recurring problem of under-dosing is resolved.

4 citations


Journal ArticleDOI
TL;DR: A series of studies have shown that it is possible to reprogram resident glia into new neurons within the brain parenchyma, which opened up for the targeted attempts to achieve functional brain repair using in vivo conversion.

3 citations


Journal ArticleDOI
TL;DR: In this article, the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control, were assessed in vivo.
Abstract: BACKGROUND: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson's disease (PD) and they provide the option of using the patient's own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD.OBJECTIVE: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control.METHODS: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo.RESULTS: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line.CONCLUSION: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients. (Less)

2 citations