Institution
University of California, Irvine
Education•Irvine, California, United States•
About: University of California, Irvine is a(n) education organization based out in Irvine, California, United States. It is known for research contribution in the topic(s): Population & Galaxy. The organization has 47031 authors who have published 113602 publication(s) receiving 5521832 citation(s). The organization is also known as: UC Irvine & UCI.
Topics: Population, Galaxy, Poison control, Cancer, Gene
Papers published on a yearly basis
Papers
More filters
06 Sep 2014
TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
18,843 citations
Book•
01 Jan 1995TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided.
Abstract: FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.
16,069 citations
Queen's University Belfast1, Collège de France2, English Heritage3, University of Arizona4, University of Sheffield5, University of Oxford6, University of Minnesota7, University of Hohenheim8, University of Kiel9, Lawrence Livermore National Laboratory10, University of Bergen11, ETH Zurich12, University of Waikato13, Woods Hole Oceanographic Institution14, Swiss Federal Institute for Forest, Snow and Landscape Research15, Cornell University16, University of Bristol17, University of Glasgow18, University of California, Irvine19, University of New South Wales20
TL;DR: In this paper, Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
Abstract: Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
13,118 citations
Johns Hopkins University1, Johns Hopkins University School of Medicine2, Mayo Clinic3, McGill University4, Harvard University5, University of California, Irvine6, University of Pittsburgh7, Columbia University Medical Center8, Eli Lilly and Company9, Washington University in St. Louis10, UCL Institute of Neurology11, VU University Medical Center12, Alzheimer's Association13, Northwestern University14, National Institutes of Health15
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.
11,067 citations
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions., plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors., probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology.
11,048 citations
Authors
Showing all 47031 results
Name | H-index | Papers | Citations |
---|---|---|---|
Daniel Levy | 212 | 933 | 194778 |
Rob Knight | 201 | 1061 | 253207 |
Lewis C. Cantley | 196 | 748 | 169037 |
Dennis W. Dickson | 191 | 1243 | 148488 |
Terrie E. Moffitt | 182 | 594 | 150609 |
Joseph Biederman | 179 | 1012 | 117440 |
John R. Yates | 177 | 1036 | 129029 |
John A. Rogers | 177 | 1341 | 127390 |
Avshalom Caspi | 170 | 524 | 113583 |
Yang Gao | 168 | 2047 | 146301 |
Carl W. Cotman | 165 | 809 | 105323 |
John H. Seinfeld | 165 | 921 | 114911 |
Gregg C. Fonarow | 161 | 1676 | 126516 |
Jerome I. Rotter | 156 | 1071 | 116296 |
David Cella | 156 | 1258 | 106402 |