scispace - formally typeset
Search or ask a question

Showing papers by "Andreas Knoblauch published in 2014"


Journal ArticleDOI
TL;DR: This paper summarizes the present state of cell assembly theory, realized in a network of associative memories, and of the anatomical evidence for its location in the cerebral cortex.
Abstract: Donald Hebb's concept of cell assemblies is a physiology-based idea for a distributed neural representation of behaviorally relevant objects, concepts, or constellations. In the late 70s Valentino Braitenberg started the endeavor to spell out the hypothesis that the cerebral cortex is the structure where cell assemblies are formed, maintained and used, in terms of neuroanatomy (which was his main concern) and also neurophysiology. This endeavor has been carried on over the last 30 years corroborating most of his findings and interpretations. This paper summarizes the present state of cell assembly theory, realized in a network of associative memories, and of the anatomical evidence for its location in the cerebral cortex.

136 citations


Journal ArticleDOI
23 May 2014-PLOS ONE
TL;DR: This model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect.
Abstract: Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect.

40 citations


Journal ArticleDOI
TL;DR: The results showed that skilled adapters, in contrast to poor adapters, possess a global representation of movement directions aligned to the cardinal axes, which supports the sensorimotor adaptation performance.
Abstract: The authors investigated the effects of cognitive representations of movement directions on sensorimotor adaptation performance. Adaptation performance was measured via a pointing experiment in which participants were provided with visual feedback that was distorted along the midsagittal plane (i.e., left-right reversal). Performance was analyzed relative to participants' individual adaptation gains and 3 groups were subsequently defined (i.e., skilled, average, and poor adapters). The group separation was kept for the Cognitive Measurement of Represented Directions, which was used to analyze participants' cognitive representation of movement directions. The results showed that skilled adapters, in contrast to poor adapters, possess a global representation of movement directions aligned to the cardinal axes. The cognitive representation structure hence supports the sensorimotor adaptation performance.

8 citations