scispace - formally typeset
Search or ask a question

Showing papers by "Angèle Consoli published in 2022"


Journal ArticleDOI
TL;DR: In this article , a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals was conducted, and the authors reported common variant associations at 287 distinct genomic loci.
Abstract: Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

558 citations


Journal ArticleDOI
TL;DR: In this article , the efficacy and safety of transcranial direct current stimulation (tDCS) in four cases of catatonia occurring on Phelan-McDermid syndrome were presented.

1 citations


TL;DR: HAL as discussed by the authors is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not, which may come from teaching and research institutions in France or abroad, or from public or private research centers.
Abstract: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Efficacity of tDCS in catatonic patients with Phelan McDermid syndrome, a case series Mylène Moyal, Marion Plaze, Ambre Baruchet, David Attali, Cora Cravero, Marie Raffin, Angèle Consoli, David Cohen, Alexandre Haroche, Boris Chaumette