scispace - formally typeset
Search or ask a question

Showing papers by "Bhagwati Prasad Kashyap published in 2017"


Journal ArticleDOI
TL;DR: The microstructure, mechanical properties, and corrosion behavior of 2507 super duplex stainless steel after multipass friction stir processing (FSP) were examined in this article, where a significant refinement in grain size of both ferrite and austenite was observed in stir zone resulting in improved yield and tensile strength.
Abstract: The microstructure, mechanical properties, and corrosion behavior of 2507 super duplex stainless steel after multipass friction stir processing (FSP) were examined. A significant refinement in grain size of both ferrite and austenite was observed in stir zone resulting in improved yield and tensile strength. Electrochemical impedance spectroscopy and anodic polarization studies in 3.5 wt.% NaCl solution showed nobler corrosion characteristics with increasing number of FSP passes. This was evident from the decrease in corrosion current density, decrease in passive current density, and increase in polarization resistance. Also, the decrease in density of defects, based on Mott-Schottky analysis, further confirms the improvement in corrosion resistance of 2507 super duplex stainless steel after multipass FSP.

20 citations


Journal ArticleDOI
TL;DR: In this article, an experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool, which was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment.

19 citations


Journal ArticleDOI
TL;DR: In this paper, a unified strain-compensated constitutive equation was established to describe the high temperature deformation behavior of the material under the identified processing conditions, and a statistical parameter such as correlation coefficient has been used to validate the established equation.
Abstract: High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

16 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of hydrogen on high temperature flow behavior of VT20, a near α-Ti alloy, was studied using differential strain rate compression tests, and the results indicated that the deformation mechanism is the grain boundary sliding accommodated by lattice diffusion.
Abstract: The effect of hydrogen on high temperature flow behavior of VT20, a near α-Ti alloy, was studied using differential strain rate compression tests. Hydrogen level was varied from 0.0015 to 0.36 wt%. Strain rate jump tests were carried out over the strain rate and temperature ranges of 10−3–10−1 s−1 and 600–947 °C, respectively. The addition of hydrogen increased the volume fraction of β phase, decreased the grain size and lowered the flow stress up to test temperature of 900 °C. The values of apparent strain rate sensitivity (m) and activation energy for deformation (Q) were found to vary from 0.03 to 0.46 and 176–382 kJ/mol, respectively, depending on strain rate, test temperature and hydrogen level. With increasing hydrogen content the peak strain rate sensitivity shifted to lower temperatures. The values obtained for m (≥0.30) and Q (~176 kJ/mol) suggested that the deformation mechanism is the grain boundary sliding accommodated by lattice diffusion. The lower values of m (0.20–0.25) suggested dislocation climb as the deformation mechanism and the further decrease in m and increase in Q suggested power law breakdown.

12 citations


Journal ArticleDOI
TL;DR: In this article, a multi-physics finite element model is developed to determine the optimal shape and orientation of the hydrides by minimizing accommodation free energy, and the model is applied at various temperatures viz., 25, 100, 200, 300 and 400 ǫ c.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the tensile flow behavior of aluminum-boron carbide (Al-B4C) composites of 0, 5 and 15% B4C, hot rolled to ~88% with intermediate annealing at 350°C, and found that the strain rate sensitivity index (m) was found to be ~0.1 over for all the composites in both as-cast as well as hot rolled condition.
Abstract: High temperature tensile flow behavior of aluminum-boron carbide (Al-B4C) composites of 0, 5 and 15% B4C, hot rolled to ~88% with intermediate annealing at 350 °C, was investigated by constant initial strain rate (CIS) test technique at 500 °C and strain rate jump test technique over the temperature range of 400–500 °C. In the as-cast condition, the flow stresses obtained between CIS and strain rate jump test techniques were found to be significantly different at 500 °C. The strain rate sensitivity index (m) was found to be ~0.1 over for all the composites in both as-cast as well as hot rolled condition. Tensile elongations were found to be 0.36 in both as-cast and hot rolled aluminum, whereas the same reduced in Al-5% B4C composite to 0.35 and 0.27, respectively. The values of activation energy (Q) for deformation of rolled aluminum and Al-5% B4C composite were determined to be 194.2 and 73.4 kJ/mol, respectively. The microstructural examination, using SEM and EBSD techniques, revealed cavitation in alum...

4 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of die channel angle (Φ) in hot (~623 K) equi-channel angular pressing (ECAP) on microstructure, and tensile and compressive flow properties of AZ80 Mg alloy were investigated.
Abstract: The effects of die channel angle (Φ) in hot (~623 K) equi-channel angular pressing (ECAP) on microstructure, and tensile and compressive flow properties of AZ80 Mg alloy were investigated. Two solid ECAP dies, having Φ of (1) dual 60° and 120° in a single die and (2) 90° in another die, were designed for this purpose. Grain refinement with more than 40% reduction in average grain size along with submicron size second-phase β-precipitates was achieved after single-pass ECAP. A great variation in β-Mg17Al12 phase morphology with increasing flow stresses in tension and compression are found with decreasing value of angle Φ. There found an increasing effect on strain to failure with decrease in porosity and second-phase precipitate modification. However, there appears flow asymmetry between tension and compression with the latter exhibiting greater flow stress and strain to failure.

2 citations


Book ChapterDOI
01 Jan 2017
TL;DR: In this article, the Mott-Schottky analysis confirmed that the charge carrier density in the passive oxide layer is decreased with decreasing grain size and increased number of passes led to further reduction in grain size.
Abstract: Friction stir processing (FSP) has been shown to be effective in the microstructural modification. In this study, 2507 super duplex stainless steel was subjected to multipass FSP and the processed samples were investigated. Refinement in grain size of both ferrite and austenite was observed in the stir zone of the processed samples. Increased number of passes led to further reduction in grain size. Anodic polarization studies in 3.5 wt% NaCl solution showed that the processed samples possessed improved corrosion resistance. The Mott-Schottky analysis confirmed that the charge carrier density in the passive oxide layer is decreased with decreasing grain size.

2 citations