scispace - formally typeset
Search or ask a question

Showing papers by "Bianhua Liu published in 2022"


Journal ArticleDOI
TL;DR: It is shown that triglycerides supplied in lipid droplets can efficiently repair ER via the two critical pathways: supplying materials for ER repair by converting triglycerides into fatty acids and diglycerides and partially inhibiting autophagy for stressed ER.
Abstract: Endoplasmic reticulum (ER) is an important organelle of a membranous tubule network in cells for the synthesis, assembly, and modification of peptides, proteins, and enzymes. Autophagy and destruction of ER commonly occur during normal cellular activities. These processes have been studied extensively, but the spontaneous ER regeneration process is poorly understood because of the lack of molecular tools capable of distinguishing the intact, damaged, autophagic, and regenerative ER in live cells. Herein, we report a dual-localizing, environment-responsive, and lifetime-sensitive fluorescent probe for real-time monitoring ER autophagy and regeneration in live cells. Using this tool, the fluorescence lifetime imaging can quantitatively determine the degrees of ER destruction and spontaneous recovery. Significantly, we show that triglycerides supplied in lipid droplets can efficiently repair ER via the two critical pathways: (i) supplying materials for ER repair by converting triglycerides into fatty acids and diglycerides and (ii) partially inhibiting autophagy for stressed ER.

5 citations


Journal ArticleDOI
TL;DR: Compared with the standard microscopy, STED super-resolution imaging allowed the tracking of the ER ultrastructure with a lateral resolution less than 100 nm and the pores within the ER network are clearly visible and the three dimensional structure of ER was successfully reconstructed from z-stack images due to the excellent photostability of Phe-CDs.
Abstract: Stimulated emission depletion (STED) microscopy provides a powerful tool for visualizing the ultrastructure and dynamics of subcellular organelles, however, the photobleaching of organelle trackers have limited the application of STED imaging in living cells. Here, we report photostable and amphiphilic carbon dots (Phe-CDs) with bright orange fluorescence via a simple one-pot hydrothermal treatment of o-phenylenediamine and phenylalanine. The obtained Phe-CDs not only had high brightness (quantum yield ∼18%) but also showed excellent photostability under ultraviolet irradiation. The CDs can quickly penetrate into cells within 2 min and are specific for intracellular ER. The further investigations by Phe-CDs revealed the reconstitution process of ER from loosely spaced tubes into a continuously dense network of tubules and sheets during cell division. Importantly, compared with the standard microscopy, STED super-resolution imaging allowed the tracking of the ER ultrastructure with a lateral resolution less than 100 nm and the pores within the ER network are clearly visible. Moreover, the three dimensional (3D) structure of ER was also successfully reconstructed from z-stack images due to the excellent photostability of Phe-CDs.

2 citations