scispace - formally typeset
Search or ask a question

Showing papers by "Bing-Wen Soong published in 2020"


Journal ArticleDOI
TL;DR: To investigate the clinical, electrophysiological, neuroimaging characteristics and genetic features of SPG5 in Taiwan, a large number of cases of central giant cell death have been reported in Taiwan in recent years.
Abstract: Objectives To investigate the clinical, electrophysiological, neuroimaging characteristics and genetic features of SPG5 in Taiwan. Methods Mutational analysis of the coding regions of CYP7B1 was performed by utilizing targeted resequencing analysis of the 187 unrelated Taiwanese HSP patients. The diagnosis of SPG5 was ascertained by the presence of biallelic CYP7B1 mutations. The SPG5 patients received clinical, electrophysiological, and neuroimaging evaluations. Disease severity was assessed by using the Spastic Paraplegia Rating Scale (SPRS) and the disability score. Two microsatellite markers as well as 18 single-nucleotide polymorphism (SNP) markers flanking CYP7B1 were genotyped to assess the founder effect of the CYP7B1 p.R112* mutation. Results Nineteen SPG5 patients from 17 families were identified. They typically presented an insidious onset progressive spastic paraparesis with proprioception involvement beginning at age 8 to 40 years. Their MRIs often showed white matter abnormalities in bilateral occipito-parietal regions, spinal cord atrophy, and mild cerebellar atrophy. Six different mutations in CYP7B1 were recognized, including three novel ones (p.N131Ifs*4, p.A295V, and p.L439R). CYP7B1 p.R112* was the most common mutation and present in 88.2% of the 17 SPG5 pedigrees. The patients with homozygous CYP7B1 p.R112* mutations had a milder clinical severity. Detailed haplotype analyses demonstrated a shared haplotype in the 25 individuals carrying at least one single allele of CYP7B1 p.R112*, suggesting a founder effect. Interpretation This study delineates the distinct clinical and genetic features of SPG5 in Taiwan and provides useful information for the diagnosis and management of SPG5, especially in patients of Chinese descent.

11 citations


Journal ArticleDOI
TL;DR: The results found that the atrophy of the SCA3 are not only limited in the infratentorial regions, but should be considered a pathology affecting the whole brain.
Abstract: Background: Spinocerebellar ataxia type 3 (SCA) is a cerebellum-dominant degenerative disorder that is characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. These impairments may result from the efferent loss of the cerebellar cortex and degeneration of the cerebral cortex. Method: We used the three-dimensional fractal dimension (3D-FD) method to quantify the morphological changes in the supratentorial regions and assessed atrophy in the relatively focal regions in patients with SCA3. A total of 48 patients with SCA3 and 50 sex- and age-matched healthy individuals, as the control group, participated in this study. The 3D-FD method was proposed to distinguish 97 automatic anatomical label regions of gray matter (left cerebrum: 45, right cerebrum: 45, cerebellum: 7) between healthy individuals and patients with SCA3. Results: Patients with SCA3 exhibited reduced brain complexity within both the traditional olivopontocerebellar atrophy (OPCA) pattern and specific supratentorial regions. The study results confirmed the extensive involvement of extracerebellar regions in SCA3. The atrophied regions of SCA3 in infratentorial and supratentorial cortex showed a wide range of overlapped areas as in two functional cortexes, namely cerebellum-related cortex and basal ganglia-related cortex. Conclusions: Our results found that the atrophy of the SCA3 are not only limited in the infratentorial regions. Both cerebellar related cortex and basal ganglia related cortex were affected in the disease process of SCA3. Our findings might correlate to the common symptoms of SCA3, such as ataxia, Parkinsonism, dysarthria, and dysmetria. SCA3 should no longer be considered a disease limited to the cerebellum and its connections; rather, it should be considered a pathology affecting the whole brain.

9 citations


Journal ArticleDOI
TL;DR: SCAR16 is an important but often neglected diagnosis of cerebellar ataxia of unknown cause, and the isolated cerebellars without involvement of other systems cannot be a basis to exclude the possibility of STUB1 -related disease.
Abstract: Mutations in STUB1 have been identified to cause autosomal recessive spinocerebellar ataxia type 16 (SCAR16), also named as Gordon Holmes syndrome, which is characterized by cerebellar ataxia, cognitive decline, and hypogonadism. Additionally, several heterozygous mutations in STUB1 have recently been described as a cause of autosomal dominant spinocerebellar ataxia type 48. STUB1 encodes C-terminus of HSC70-interacting protein (CHIP), which functions as an E3 ubiquitin ligase and co-chaperone and has been implicated in several neurodegenerative diseases. In this study, we identified two SCAR16 pedigrees from 512 Taiwanese families with cerebellar ataxia. Two compound heterozygous mutations in STUB1, c.[433A>C];[721C>T] (p.[K145Q];[R241W]) and c.[433A>C];[694T>G] (p.[K145Q];[C232G]), were found in each SCAR16 family by Sanger sequencing, respectively. Among them, STUB1 p.R241W and p.C232G were novel mutations. SCAR16 seems to be an uncommon ataxic syndrome, accounting for 0.4% (2/512) of our cohort with cerebellar ataxia. Clinically, the three patients from the two SCAR16 families presented with cerebellar ataxia alone or in combination with cognitive impairment. The brain MRIs showed a marked cerebellar atrophy of the patients. In conclusion, SCAR16 is an important but often neglected diagnosis of cerebellar ataxia of unknown cause, and the isolated cerebellar ataxia without involvement of other systems cannot be a basis to exclude the possibility of STUB1-related disease.

8 citations