scispace - formally typeset
Search or ask a question
Author

Bradford M. Beckmann

Other affiliations: University of Wisconsin-Madison
Bio: Bradford M. Beckmann is an academic researcher from Advanced Micro Devices. The author has contributed to research in topics: Cache & Synchronization (computer science). The author has an hindex of 22, co-authored 93 publications receiving 6662 citations. Previous affiliations of Bradford M. Beckmann include University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: The high level of collaboration on the gem5 project, combined with the previous success of the component parts and a liberal BSD-like license, make gem5 a valuable full-system simulation tool.
Abstract: The gem5 simulation infrastructure is the merger of the best aspects of the M5 [4] and GEMS [9] simulators. M5 provides a highly configurable simulation framework, multiple ISAs, and diverse CPU models. GEMS complements these features with a detailed and exible memory system, including support for multiple cache coherence protocols and interconnect models. Currently, gem5 supports most commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC, and x86), including booting Linux on three of them (ARM, ALPHA, and x86).The project is the result of the combined efforts of many academic and industrial institutions, including AMD, ARM, HP, MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wisconsin. Over the past ten years, M5 and GEMS have been used in hundreds of publications and have been downloaded tens of thousands of times. The high level of collaboration on the gem5 project, combined with the previous success of the component parts and a liberal BSD-like license, make gem5 a valuable full-system simulation tool.

4,039 citations

Journal ArticleDOI
TL;DR: The Wisconsin Multifacet Project has created a simulation toolset to characterize and evaluate the performance of multiprocessor hardware systems commonly used as database and web servers as mentioned in this paper, which includes a set of timing simulator modules for modeling the timing of the memory system and microprocessors.
Abstract: The Wisconsin Multifacet Project has created a simulation toolset to characterize and evaluate the performance of multiprocessor hardware systems commonly used as database and web servers. We leverage an existing full-system functional simulation infrastructure (Simics [14]) as the basis around which to build a set of timing simulator modules for modeling the timing of the memory system and microprocessors. This simulator infrastructure enables us to run architectural experiments using a suite of scaled-down commercial workloads [3]. To enable other researchers to more easily perform such research, we have released these timing simulator modules as the Multifacet General Execution-driven Multiprocessor Simulator (GEMS) Toolset, release 1.0, under GNU GPL [9].

1,515 citations

Proceedings ArticleDOI
04 Dec 2004
TL;DR: This paper develops L2 cache designs for CMPs that incorporate block migration, stride-based prefetching between L1 and L2 caches, and presents a hybrid design-combining all three techniques-that improves performance by an additional 2% to 19% overPrefetching alone.
Abstract: In response to increasing (relative) wire delay, architects have proposed various technologies to manage the impact of slow wires on large uniprocessor L2 caches. Block migration (e.g., D-NUCA and NuRapid) reduces average hit latency by migrating frequently used blocks towards the lower-latency banks. Transmission Line Caches (TLC) use on-chip transmission lines to provide low latency to all banks. Traditional stride-based hardware prefetching strives to tolerate, rather than reduce, latency. Chip multiprocessors (CMPs) present additional challenges. First, CMPs often share the on-chip L2 cache, requiring multiple ports to provide sufficient bandwidth. Second, multiple threads mean multiple working sets, which compete for limited on-chip storage. Third, sharing code and data interferes with block migration, since one processor's low-latency bank is another processor's high-latency bank. In this paper, we develop L2 cache designs for CMPs that incorporate these three latency management techniques. We use detailed full-system simulation to analyze the performance trade-offs for both commercial and scientific workloads. First, we demonstrate that block migration is less effective for CMPs because 40-60% of L2 cache hits in commercial workloads are satisfied in the central banks, which are equally far from all processors. Second, we observe that although transmission lines provide low latency, contention for their restricted bandwidth limits their performance. Third, we show stride-based prefetching between L1 and L2 caches alone improves performance by at least as much as the other two techniques. Finally, we present a hybrid design-combining all three techniques-that improves performance by an additional 2% to 19% over prefetching alone.

391 citations

Proceedings ArticleDOI
07 Dec 2013
TL;DR: This paper develops Heterogeneous System Coherence (HSC) for CPU-GPU systems to mitigate the coherence bandwidth effects of GPU memory requests, which replaces a standard directory with a region directory and adds a region buffer to the L2 cache.
Abstract: Many future heterogeneous systems will integrate CPUs and GPUs physically on a single chip and logically connect them via shared memory to avoid explicit data copying. Making this shared memory coherent facilitates programming and fine-grained sharing, but throughput-oriented GPUs can overwhelm CPUs with coherence requests not well-filtered by caches. Meanwhile, region coherence has been proposed for CPU-only systems to reduce snoop bandwidth by obtaining coherence permissions for large regions. This paper develops Heterogeneous System Coherence (HSC) for CPU-GPU systems to mitigate the coherence bandwidth effects of GPU memory requests. HSC replaces a standard directory with a region directory and adds a region buffer to the L2 cache. These structures allow the system to move bandwidth from the coherence network to the high-bandwidth direct-access bus without sacrificing coherence. Evaluation results with a subset of Rodinia benchmarks and the AMD APP SDK show that HSC can improve performance compared to a conventional directory protocol by an average of more than 2× and a maximum of more than 4.5×. Additionally, HSC reduces the bandwidth to the directory by an average of 94% and by more than 99% for four of the analyzed benchmarks.

131 citations

Proceedings ArticleDOI
24 Feb 2014
TL;DR: A new class of memory consistency models that add scoped synchronization to data-race-free models like those of C++ and Java, and quanti-tatively shows that HRF-indirect encourages forward-looking programs with irregular parallelism by showing up to a 10% performance increase in a task runtime for GPUs.
Abstract: Commodity heterogeneous systems (e.g., integrated CPUs and GPUs), now support a unified, shared memory address space for all components. Because the latency of global communication in a heterogeneous system can be prohibi-tively high, heterogeneous systems (unlike homogeneous CPU systems) provide synchronization mechanisms that only guarantee ordering among a subset of threads, which we call a scope. Unfortunately, the consequences and se-mantics of these scoped operations are not yet well under-stood. Without a formal and approachable model to reason about the behavior of these operations, we risk an array of portability and performance issues. In this paper, we embrace scoped synchronization with a new class of memory consistency models that add scoped synchronization to data-race-free models like those of C++ and Java. Called sequential consistency for heterogeneous-race-free (SC for HRF), the new models guarantee SC for programs with "sufficient" synchronization (no data races) of "sufficient" scope. We discuss two such models. The first, HRF-direct, works well for programs with highly regular parallelism. The second, HRF-indirect, builds on HRF-direct by allowing synchronization using different scopes in some cases involving transitive communication. We quanti-tatively show that HRF-indirect encourages forward-looking programs with irregular parallelism by showing up to a 10% performance increase in a task runtime for GPUs.

108 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The high level of collaboration on the gem5 project, combined with the previous success of the component parts and a liberal BSD-like license, make gem5 a valuable full-system simulation tool.
Abstract: The gem5 simulation infrastructure is the merger of the best aspects of the M5 [4] and GEMS [9] simulators. M5 provides a highly configurable simulation framework, multiple ISAs, and diverse CPU models. GEMS complements these features with a detailed and exible memory system, including support for multiple cache coherence protocols and interconnect models. Currently, gem5 supports most commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC, and x86), including booting Linux on three of them (ARM, ALPHA, and x86).The project is the result of the combined efforts of many academic and industrial institutions, including AMD, ARM, HP, MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wisconsin. Over the past ten years, M5 and GEMS have been used in hundreds of publications and have been downloaded tens of thousands of times. The high level of collaboration on the gem5 project, combined with the previous success of the component parts and a liberal BSD-like license, make gem5 a valuable full-system simulation tool.

4,039 citations

Proceedings ArticleDOI
12 Dec 2009
TL;DR: Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taking into account configuring clusters with 4 cores gives thebest EDA2P and EDAP.
Abstract: This paper introduces McPAT, an integrated power, area, and timing modeling framework that supports comprehensive design space exploration for multicore and manycore processor configurations ranging from 90nm to 22nm and beyond. At the microarchitectural level, McPAT includes models for the fundamental components of a chip multiprocessor, including in-order and out-of-order processor cores, networks-on-chip, shared caches, integrated memory controllers, and multiple-domain clocking. At the circuit and technology levels, McPAT supports critical-path timing modeling, area modeling, and dynamic, short-circuit, and leakage power modeling for each of the device types forecast in the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors. McPAT has a flexible XML interface to facilitate its use with many performance simulators. Combined with a performance simulator, McPAT enables architects to consistently quantify the cost of new ideas and assess tradeoffs of different architectures using new metrics like energy-delay-area2 product (EDA2P) and energy-delay-area product (EDAP). This paper explores the interconnect options of future manycore processors by varying the degree of clustering over generations of process technologies. Clustering will bring interesting tradeoffs between area and performance because the interconnects needed to group cores into clusters incur area overhead, but many applications can make good use of them due to synergies of cache sharing. Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taken into account configuring clusters with 4 cores gives the best EDA2P and EDAP.

2,487 citations

Journal ArticleDOI
TL;DR: The Wisconsin Multifacet Project has created a simulation toolset to characterize and evaluate the performance of multiprocessor hardware systems commonly used as database and web servers as mentioned in this paper, which includes a set of timing simulator modules for modeling the timing of the memory system and microprocessors.
Abstract: The Wisconsin Multifacet Project has created a simulation toolset to characterize and evaluate the performance of multiprocessor hardware systems commonly used as database and web servers. We leverage an existing full-system functional simulation infrastructure (Simics [14]) as the basis around which to build a set of timing simulator modules for modeling the timing of the memory system and microprocessors. This simulator infrastructure enables us to run architectural experiments using a suite of scaled-down commercial workloads [3]. To enable other researchers to more easily perform such research, we have released these timing simulator modules as the Multifacet General Execution-driven Multiprocessor Simulator (GEMS) Toolset, release 1.0, under GNU GPL [9].

1,515 citations

01 Jan 2005
TL;DR: The Wisconsin Multifacet Project has created a simulation toolset to characterize and evaluate the performance of multiprocessor hardware systems commonly used as database and web servers and has released a set of timing simulator modules for modeling the timing of the memory system and microprocessors.

1,464 citations