Author

# Brian Launder

Other affiliations: Imperial College London, University of California, Davis

Bio: Brian Launder is an academic researcher from University of Manchester. The author has contributed to research in topic(s): Turbulence & Reynolds number. The author has an hindex of 70, co-authored 245 publication(s) receiving 42647 citation(s). Previous affiliations of Brian Launder include Imperial College London & University of California, Davis.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, the authors present a review of the applicability and applicability of numerical predictions of turbulent flow, and advocate that computational economy, range of applicability, and physical realism are best served by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour.

Abstract: The paper reviews the problem of making numerical predictions of turbulent flow. It advocates that computational economy, range of applicability and physical realism are best served at present by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour. The width of applicability of the model is demonstrated by reference to numerical computations of nine substantially different kinds of turbulent flow.

10,988 citations

••

TL;DR: In this article, the local turbulent viscosity is determined from the solution of transport equations for the turbulence kinetic energy and the energy dissipation rate, and the predicted hydrodynamic and heat-transfer development of the boundary layers is in close agreement with the measured behaviour.

Abstract: The paper presents a new model of turbulence in which the local turbulent viscosity is determined from the solution of transport equations for the turbulence kinetic energy and the energy dissipation rate. The major component of this work has been the provision of a suitable form of the model for regions where the turbulence Reynolds number is low. The model has been applied to the prediction of wall boundary-layer flows in which streamwise accelerations are so severe that the boundary layer reverts partially towards laminar. In all cases, the predicted hydrodynamic and heat-transfer development of the boundary layers is in close agreement with the measured behaviour.

3,752 citations

••

TL;DR: In this article, the authors developed a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows.

Abstract: The paper develops proposals for a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows. Numerical solutions of the model equations are presented for a selection of strained homogeneous shear flows and for two-dimensional inhomogeneous shear flows including the jet, the wake, the mixing layer and plane channel flow. In addition, it is shown that the closure does predict a very strong influence of secondary strain terms for flow over curved surfaces.

3,654 citations

••

2,508 citations

•

01 Jan 1972

TL;DR: In this article, a lecture in mathematical models of turbulence is presented. But it is based on a mathematical model of turbulence, not on a real world scenario, and it is not suitable for discussion.

Abstract: Lectures in mathematical models of turbulence , Lectures in mathematical models of turbulence , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

2,428 citations

##### Cited by

More filters

••

TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.

Abstract: Two new two-equation eddy-viscosity turbulence models will be presented. They combine different elements of existing models that are considered superior to their alternatives. The first model, referred to as the baseline (BSL) model, utilizes the original k-ω model of Wilcox in the inner region of the boundary layer and switches to the standard k-e model in the outer region and in free shear flows. It has a performance similar to the Wilcox model, but avoids that model's strong freestream sensitivity

12,746 citations

••

TL;DR: In this paper, the authors present a review of the applicability and applicability of numerical predictions of turbulent flow, and advocate that computational economy, range of applicability, and physical realism are best served by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour.

Abstract: The paper reviews the problem of making numerical predictions of turbulent flow. It advocates that computational economy, range of applicability and physical realism are best served at present by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour. The width of applicability of the model is demonstrated by reference to numerical computations of nine substantially different kinds of turbulent flow.

10,988 citations

••

TL;DR: The second-moment turbulent closure hypothesis has been applied to geophysical fluid problems since 1973, when genuine predictive skill in coping with the effects of stratification was demonstrated as discussed by the authors.

Abstract: Applications of second-moment turbulent closure hypotheses to geophysical fluid problems have developed rapidly since 1973, when genuine predictive skill in coping with the effects of stratification was demonstrated. The purpose here is to synthesize and organize material that has appeared in a number of articles and add new useful material so that a complete (and improved) description of a turbulence model from conception to application is condensed in a single article. It is hoped that this will be a useful reference to users of the model for application to either atmospheric or oceanic boundary layers.

6,142 citations

•

01 Jun 1978TL;DR: In this paper, the authors evaluated the applicability of the standard κ-ϵ equations and other turbulence models with respect to their applicability in swirling, recirculating flows.

Abstract: The standard κ-ϵ equations and other turbulence models are evaluated with respect to their applicability in swirling, recirculating flows. The turbulence models are formulated on the basis of two separate viewpoints. The first perspective assumes that an isotropic eddy viscosity and the modified Boussinesq hypothesis adequately describe the stress distributions, and that the source of predictive error is a consequence of the modeled terms in the κ-ϵ equations. Both stabilizing and destabilizing Richardson number corrections are incorporated to investigate this line of reasoning. A second viewpoint proposes that the eddy viscosity approach is inherently inadequate and that a redistribution of the stress magnitudes is necessary. Investigation of higher-order closure is pursued on the level of an algebraic stress closure. Various turbulence model predictions are compared with experimental data from a variety of isothermal, confined studies. Supportive swirl comparisons are also performed for a laminar flow case, as well as reacting flow cases. Parallel predictions or contributions from other sources are also consulted where appropriate. Predictive accuracy was found to be a partial function of inlet boundary conditions and numerical diffusion. Despite prediction sensitivity to inlet conditions and numerics, the data comparisons delineate the relative advantages and disadvantages of the various modifications. Possible research avenues in the area of computational modeling of strongly swirling, recirculating flows are reviewed and discussed.

5,386 citations

••

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.

Abstract: A direct numerical simulation of a turbulent channel flow is performed. The unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points. All essential turbulence scales are resolved on the computational grid and no subgrid model is used. A large number of turbulence statistics are computed and compared with the existing experimental data at comparable Reynolds numbers. Agreements as well as discrepancies are discussed in detail. Particular attention is given to the behavior of turbulence correlations near the wall. A number of statistical correlations which are complementary to the existing experimental data are reported for the first time.

4,501 citations