scispace - formally typeset
Search or ask a question

Showing papers by "Bulmaro Cisneros published in 2019"


Journal ArticleDOI
TL;DR: Physical exercise improved some cerebellar characteristics and the oxidative state of patients with SCA7, which suggest a beneficial effect on the general health condition of patients.
Abstract: Today, neurorehabilitation has become in a widely used therapeutic approach in spinocerebellar ataxias; however, there are scarce powerful clinical studies supporting this notion, and these studies require extension to other specific SCA subtypes in order to be able to form conclusions concerning its beneficial effects. Therefore, in this study, we perform for the first time a case-control pilot randomized, single-blinded, cross-sectional, and observational study to evaluate the effects of physical neurorehabilitation on the clinical and biochemical features of patients with spinocerebellar ataxia type 7 (SCA7) in 18 patients diagnosed with SCA7. In agreement with the exercise regimen, the participants were assigned to groups as follows: (a) the intensive training group, (b) the moderate training group, and (c) the non-training group (control group). We found that both moderate and intensive training groups showed a reduction in SARA scores but not INAS scores, compared with the control group (p 0.05). Patients under physical training exhibited significantly decreased levels in lipid-damage biomarkers and malondialdehyde, as well as a significant increase in the activity of the antioxidant enzyme PON-1, compared with the control group (p < 0.05). Physical exercise improved some cerebellar characteristics and the oxidative state of patients with SCA7, which suggest a beneficial effect on the general health condition of patients.

22 citations


Journal ArticleDOI
TL;DR: The results suggest that treatments designed to induce PRKN expression through the use of nontoxic AhR agonist ligands may be novel strategies to prevent and delay PD.

17 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the nuclear protein export pathway is exacerbated in HGPS, due to progerin‐driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning ofCRM1‐target proteins.
Abstract: The study of Hutchinson-Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin-driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1-target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.

15 citations


Journal ArticleDOI
TL;DR: The expression profile of circulating miRNAs in SCA7 is shown for the first time and a signature of four mi RNAs associated with disease severity that discriminate between early onset and adult onset is identified, highlighting their potential utility to surveillance disease progression.
Abstract: Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by a CAG repeat expansion in the ATXN7 gene coding region. Disease onset and progression are highly variable between patients, thus identification of specific/sensitive biomarkers that can improve the monitoring of disease progression is an immediate need. Because altered expression of circulating microRNAs (miRNAs) has been shown in various neurological diseases, they could be useful biomarkers for SCA7. In this study, we showed, to our knowledge for the first time, the expression profile of circulating miRNAs in SCA7. Using the TaqMan profiling low density array (TLDA), we found 71 differentially expressed miRNAs in the plasma of SCA7 patients, compared with healthy controls. The reliability of TLDA data was validated independently by quantitative real-time polymerase chain reaction in an independent cohort of patients and controls. We identified four validated miRNAs that possesses the diagnostic value to discriminate between healthy controls and patients (hsa-let-7a-5p, hsa-let7e-5p, hsa-miR-18a-5p, and hsa-miR-30b-5p). The target genes of these four miRNAs were significantly enriched in cellular processes that are relevant to central nervous system function, including Fas-mediated cell-death, heparansulfate biosynthesis, and soluble-N-ethylmaleimide-sensitive factor activating protein receptor pathways. Finally, we identify a signature of four miRNAs associated with disease severity that discriminate between early onset and adult onset, highlighting their potential utility to surveillance disease progression. In summary, circulating miRNAs might provide accessible biomarkers for disease stage and progression and help to identify novel cellular processes involved in SCA7.

12 citations


Journal ArticleDOI
TL;DR: The Bergmann glia expression of neuronal nitric oxide synthetase is described, strengthening the notion of a complex regulation of glial glutamate uptake that supports neuronal glutamate signaling.
Abstract: Glutamate exerts its actions through the activation of membrane receptors expressed in neurons and glia cells. The signaling properties of glutamate transporters have been characterized recently, s...

7 citations


Journal ArticleDOI
TL;DR: Myotonic dystrophy type 1 is a multisystemic disorder characterized mainly by skeletal muscle alterations, and oropharyngeal dysphagia is a prominent clinical feature of DM1.
Abstract: INTRODUCTION Myotonic dystrophy type 1 (DM1) is a multisystemic disorder characterized mainly by skeletal muscle alterations. Although oropharyngeal dysphagia is a prominent clinical feature of DM1, it remains poorly studied in its early disease stages. METHODS Dysphagia was investigated in 11 presymptomatic DM1 carriers, 14 patients with DM1 and 12 age-matched healthy controls, by using fiberoptic endoscopic evaluation of swallowing (FEES) and clinical scores. RESULTS Scores for the FEES variables, delayed pharyngeal reflex, posterior pooling, and postswallow residue were significantly greater in patients with DM1 and in presymptomatic DM1 carriers than in healthy controls (P < 0.05); oropharyngeal dysfunction was more severe in patients than in presymptomatic carriers. Penetration/aspiration was found altered exclusively in patients with DM1 (P < 0.05). DISCUSSION Swallowing dysfunction occurs in presymptomatic DM1 carriers. Timely diagnosis of dysphagia in preclinical stages of the disease will aid in the timely management of presymptomatic carriers, potentially preventing medical complications. Muscle Nerve, 2019.

4 citations


Journal ArticleDOI
TL;DR: The data reveal that β-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.
Abstract: β-dystroglycan (β-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, β-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that β-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, β-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of β-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that β-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.

2 citations