scispace - formally typeset
Search or ask a question

Showing papers by "Charles H. Townes published in 2011"


Journal ArticleDOI
TL;DR: In this article, an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 μm wavelength was performed using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010.
Abstract: We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 μm wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of ∼1 at 11.15 μm, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron–hydrogen-atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse and mass-loss processes.

15 citations


Journal ArticleDOI
TL;DR: In this article, an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 microns wavelength was performed using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010.
Abstract: We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 microns wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of ~1 at 11.15 microns, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse, and mass-loss processes.

12 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured the dust surrounding the star V Hydrae at a 11.15μm wavelength using the three-telescope Infrared Spatial Interferometer (ISI).
Abstract: .Dust surrounding the star V Hydrae has been measured at a 11.15 μm wavelength using the three-telescope Infrared Spatial Interferometer (ISI). The narrowband heterodyne detection system is tuned to a region free of spectral lines due to molecules surrounding the star, and only continuum radiation from the dust and star is measured. Closure-phase data show that the dust is symmetrically distributed around the star. Results obtained in 2006–2007 are well fitted by a model with a Gaussian intensity distribution with HWHM of 49 mas that contributes 0.52 of the total flux and by a uniform disk of radius 287 mas with a total flux fraction of 0.26; the remaining 0.22 of the total flux is due to the star, which is unresolved. Visibility measurements conducted in 1997 show a substantial difference from those of 2006–2007, indicating that the star was surrounded by more dust in 1997.

3 citations