scispace - formally typeset
C

Christof Paar

Researcher at Max Planck Society

Publications -  409
Citations -  23389

Christof Paar is an academic researcher from Max Planck Society. The author has contributed to research in topics: Cryptography & Encryption. The author has an hindex of 69, co-authored 399 publications receiving 21790 citations. Previous affiliations of Christof Paar include University of Massachusetts Amherst & University of Duisburg-Essen.

Papers
More filters
Book ChapterDOI

PRESENT: An Ultra-Lightweight Block Cipher

TL;DR: An ultra-lightweight block cipher, present, which is competitive with today's leading compact stream ciphers and suitable for extremely constrained environments such as RFID tags and sensor networks.
Journal Article

PRESENT: An Ultra-Lightweight Block Cipher

TL;DR: In this paper, the authors describe an ultra-lightweight block cipher, present, which is suitable for extremely constrained environments such as RFID tags and sensor networks, but it is not suitable for very large networks such as sensor networks.
Book

Understanding Cryptography: A Textbook For Students And Practitioners

Christof Paar, +1 more
TL;DR: The authors move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations.
BookDOI

Cryptographic Hardware and Embedded Systems - CHES 2002

TL;DR: A technology to block a new class of attacks on secure microcontrollers and smartcards whereby a logical 1 or 0 is not encoded by a high or low voltage on a single line, but by (HL or (LH) on a pair of lines.
Book ChapterDOI

PRINCE: a low-latency block cipher for pervasive computing applications

TL;DR: In this paper, a block cipher called PRINCE is proposed that allows encryption of data within one clock cycle with a very competitive chip area compared to known solutions. But it does not have the α-reflection property, which holds that decryption for one key corresponds to encryption with another key.