Author

# Cun-Hui Zhang

Bio: Cun-Hui Zhang is an academic researcher from Rutgers University. The author has contributed to research in topics: Estimator & Minimax. The author has an hindex of 47, co-authored 212 publications receiving 15041 citations.

Topics: Estimator, Minimax, Linear regression, Lasso (statistics), Tensor

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: It is proved that at a universal penalty level, the MC+ has high probability of matching the signs of the unknowns, and thus correct selection, without assuming the strong irrepresentable condition required by the LASSO.

Abstract: We propose MC+, a fast, continuous, nearly unbiased and accurate method of penalized variable selection in high-dimensional linear regression. The LASSO is fast and continuous, but biased. The bias of the LASSO may prevent consistent variable selection. Subset selection is unbiased but computationally costly. The MC+ has two elements: a minimax concave penalty (MCP) and a penalized linear unbiased selection (PLUS) algorithm. The MCP provides the convexity of the penalized loss in sparse regions to the greatest extent given certain thresholds for variable selection and unbiasedness. The PLUS computes multiple exact local minimizers of a possibly nonconvex penalized loss function in a certain main branch of the graph of critical points of the penalized loss. Its output is a continuous piecewise linear path encompassing from the origin for infinite penalty to a least squares solution for zero penalty. We prove that at a universal penalty level, the MC+ has high probability of matching the signs of the unknowns, and thus correct selection, without assuming the strong irrepresentable condition required by the LASSO. This selection consistency applies to the case of $p\gg n$, and is proved to hold for exactly the MC+ solution among possibly many local minimizers. We prove that the MC+ attains certain minimax convergence rates in probability for the estimation of regression coefficients in $\ell_r$ balls. We use the SURE method to derive degrees of freedom and $C_p$-type risk estimates for general penalized LSE, including the LASSO and MC+ estimators, and prove their unbiasedness. Based on the estimated degrees of freedom, we propose an estimator of the noise level for proper choice of the penalty level.

2,727 citations

••

TL;DR: In this paper, the authors proposed a penalized linear unbiased selection (PLUS) algorithm, which computes multiple exact local minimizers of a possibly nonconvex penalized loss function in a certain main branch of the graph of critical points of the loss.

Abstract: We propose MC+, a fast, continuous, nearly unbiased and accurate method of penalized variable selection in high-dimensional linear regression. The LASSO is fast and continuous, but biased. The bias of the LASSO may prevent consistent variable selection. Subset selection is unbiased but computationally costly. The MC+ has two elements: a minimax concave penalty (MCP) and a penalized linear unbiased selection (PLUS) algorithm. The MCP provides the convexity of the penalized loss in sparse regions to the greatest extent given certain thresholds for variable selection and unbiasedness. The PLUS computes multiple exact local minimizers of a possibly nonconvex penalized loss function in a certain main branch of the graph of critical points of the penalized loss. Its output is a continuous piecewise linear path encompassing from the origin for infinite penalty to a least squares solution for zero penalty. We prove that at a universal penalty level, the MC+ has high probability of matching the signs of the unknowns, and thus correct selection, without assuming the strong irrepresentable condition required by the LASSO. This selection consistency applies to the case of p≫n, and is proved to hold for exactly the MC+ solution among possibly many local minimizers. We prove that the MC+ attains certain minimax convergence rates in probability for the estimation of regression coefficients in lr balls. We use the SURE method to derive degrees of freedom and Cp-type risk estimates for general penalized LSE, including the LASSO and MC+ estimators, and prove their unbiasedness. Based on the estimated degrees of freedom, we propose an estimator of the noise level for proper choice of the penalty level. For full rank designs and general sub-quadratic penalties, we provide necessary and sufficient conditions for the continuity of the penalized LSE. Simulation results overwhelmingly support our claim of superior variable selection properties and demonstrate the computational efficiency of the proposed method.

2,382 citations

••

TL;DR: In this article, the authors proposed a method to construct confidence intervals for individual coefficients and linear combinations of several of them in a linear regression model by turning the regression data into an approximate Gaussian sequence of point estimators of individual regression coefficients.

Abstract: Summary
The purpose of this paper is to propose methodologies for statistical inference of low dimensional parameters with high dimensional data. We focus on constructing confidence intervals for individual coefficients and linear combinations of several of them in a linear regression model, although our ideas are applicable in a much broader context. The theoretical results that are presented provide sufficient conditions for the asymptotic normality of the proposed estimators along with a consistent estimator for their finite dimensional covariance matrices. These sufficient conditions allow the number of variables to exceed the sample size and the presence of many small non-zero coefficients. Our methods and theory apply to interval estimation of a preconceived regression coefficient or contrast as well as simultaneous interval estimation of many regression coefficients. Moreover, the method proposed turns the regression data into an approximate Gaussian sequence of point estimators of individual regression coefficients, which can be used to select variables after proper thresholding. The simulation results that are presented demonstrate the accuracy of the coverage probability of the confidence intervals proposed as well as other desirable properties, strongly supporting the theoretical results.

892 citations

••

TL;DR: This article showed that the LASSO selects a model of the correct order of dimensionality, controls the bias of the selected model at a level determined by the contributions of small regression coefficients and threshold bias, and selects all coefficients of greater order than the bias.

Abstract: Meinshausen and Buhlmann [Ann. Statist. 34 (2006) 1436--1462] showed that, for neighborhood selection in Gaussian graphical models, under a neighborhood stability condition, the LASSO is consistent, even when the number of variables is of greater order than the sample size. Zhao and Yu [(2006) J. Machine Learning Research 7 2541--2567] formalized the neighborhood stability condition in the context of linear regression as a strong irrepresentable condition. That paper showed that under this condition, the LASSO selects exactly the set of nonzero regression coefficients, provided that these coefficients are bounded away from zero at a certain rate. In this paper, the regression coefficients outside an ideal model are assumed to be small, but not necessarily zero. Under a sparse Riesz condition on the correlation of design variables, we prove that the LASSO selects a model of the correct order of dimensionality, controls the bias of the selected model at a level determined by the contributions of small regression coefficients and threshold bias, and selects all coefficients of greater order than the bias of the selected model. Moreover, as a consequence of this rate consistency of the LASSO in model selection, it is proved that the sum of error squares for the mean response and the $\ell_{\alpha}$-loss for the regression coefficients converge at the best possible rates under the given conditions. An interesting aspect of our results is that the logarithm of the number of variables can be of the same order as the sample size for certain random dependent designs.

683 citations

••

TL;DR: This article showed that the LASSO selects a model of the correct order of dimensionality, controls the bias of the selected model at a level determined by the contributions of small regression coefficients and threshold bias, and selects all coefficients of greater order than the bias.

Abstract: Meinshausen and Buhlmann [Ann. Statist. 34 (2006) 1436–1462] showed that, for neighborhood selection in Gaussian graphical models, under a neighborhood stability condition, the LASSO is consistent, even when the number of variables is of greater order than the sample size. Zhao and Yu [(2006) J. Machine Learning Research 7 2541–2567] formalized the neighborhood stability condition in the context of linear regression as a strong irrepresentable condition. That paper showed that under this condition, the LASSO selects exactly the set of nonzero regression coefficients, provided that these coefficients are bounded away from zero at a certain rate. In this paper, the regression coefficients outside an ideal model are assumed to be small, but not necessarily zero. Under a sparse Riesz condition on the correlation of design variables, we prove that the LASSO selects a model of the correct order of dimensionality, controls the bias of the selected model at a level determined by the contributions of small regression coefficients and threshold bias, and selects all coefficients of greater order than the bias of the selected model. Moreover, as a consequence of this rate consistency of the LASSO in model selection, it is proved that the sum of error squares for the mean response and the lα-loss for the regression coefficients converge at the best possible rates under the given conditions. An interesting aspect of our results is that the logarithm of the number of variables can be of the same order as the sample size for certain random dependent designs.

662 citations

##### Cited by

More filters

28 Jul 2005

TL;DR: PfPMP1）与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用，在黏附及免疫逃避中起关键的作�ly.

Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1（PfPMP1）与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用，在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员，通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

••

TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.

Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

01 Jan 2016

TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.

Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

••

TL;DR: In this article, the authors give a brief review of the basic idea and some history and then discuss some developments since the original paper on regression shrinkage and selection via the lasso.

Abstract: Summary. In the paper I give a brief review of the basic idea and some history and then discuss some developments since the original paper on regression shrinkage and selection via the lasso.

3,054 citations

••

TL;DR: It is proved that at a universal penalty level, the MC+ has high probability of matching the signs of the unknowns, and thus correct selection, without assuming the strong irrepresentable condition required by the LASSO.

Abstract: We propose MC+, a fast, continuous, nearly unbiased and accurate method of penalized variable selection in high-dimensional linear regression. The LASSO is fast and continuous, but biased. The bias of the LASSO may prevent consistent variable selection. Subset selection is unbiased but computationally costly. The MC+ has two elements: a minimax concave penalty (MCP) and a penalized linear unbiased selection (PLUS) algorithm. The MCP provides the convexity of the penalized loss in sparse regions to the greatest extent given certain thresholds for variable selection and unbiasedness. The PLUS computes multiple exact local minimizers of a possibly nonconvex penalized loss function in a certain main branch of the graph of critical points of the penalized loss. Its output is a continuous piecewise linear path encompassing from the origin for infinite penalty to a least squares solution for zero penalty. We prove that at a universal penalty level, the MC+ has high probability of matching the signs of the unknowns, and thus correct selection, without assuming the strong irrepresentable condition required by the LASSO. This selection consistency applies to the case of $p\gg n$, and is proved to hold for exactly the MC+ solution among possibly many local minimizers. We prove that the MC+ attains certain minimax convergence rates in probability for the estimation of regression coefficients in $\ell_r$ balls. We use the SURE method to derive degrees of freedom and $C_p$-type risk estimates for general penalized LSE, including the LASSO and MC+ estimators, and prove their unbiasedness. Based on the estimated degrees of freedom, we propose an estimator of the noise level for proper choice of the penalty level.

2,727 citations