scispace - formally typeset
Search or ask a question
Author

Dan Simon

Bio: Dan Simon is an academic researcher from Cleveland State University. The author has contributed to research in topics: Evolutionary algorithm & Kalman filter. The author has an hindex of 44, co-authored 233 publications receiving 12559 citations. Previous affiliations of Dan Simon include California State University, Long Beach & TRW Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: This paper discusses natural biogeography and its mathematics, and then discusses how it can be used to solve optimization problems, and sees that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO).
Abstract: Biogeography is the study of the geographical distribution of biological organisms. Mathematical equations that govern the distribution of organisms were first discovered and developed during the 1960s. The mindset of the engineer is that we can learn from nature. This motivates the application of biogeography to optimization problems. Just as the mathematics of biological genetics inspired the development of genetic algorithms (GAs), and the mathematics of biological neurons inspired the development of artificial neural networks, this paper considers the mathematics of biogeography as the basis for the development of a new field: biogeography-based optimization (BBO). We discuss natural biogeography and its mathematics, and then discuss how it can be used to solve optimization problems. We see that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO). This makes BBO applicable to many of the same types of problems that GAs and PSO are used for, namely, high-dimension problems with multiple local optima. However, BBO also has some features that are unique among biology-based optimization methods. We demonstrate the performance of BBO on a set of 14 standard benchmarks and compare it with seven other biology-based optimization algorithms. We also demonstrate BBO on a real-world sensor selection problem for aircraft engine health estimation.

3,418 citations

Book
23 Jun 2006
TL;DR: With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory.
Abstract: A bottom-up approach that enables readers to master and apply the latest techniques in state estimationThis book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering.While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering.Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. A solutions manual is available for instructors.With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.A solutions manual is available upon request from the Wiley editorial board.

2,711 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications, including the unscented Kalman Filter, the particle filter, and the extended Kalman Filtering.
Abstract: The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter does not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this case we can modify the Kalman filter to exploit this additional information and get better filtering performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints are linear, then all of these different approaches result in the same state estimate, which is the optimal constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering is, in general, not optimal, and different approaches give different results.

836 citations

Journal ArticleDOI
TL;DR: In this article, a rigorous analytic method of incorporating state equality constraints in the Kalman filter is developed, which significantly improves the prediction accuracy of the filter and is demonstrated on a simple nonlinear vehicle tracking problem.
Abstract: Kalman filters are commonly used to estimate the states of a dynamic system. However, in the application of Kalman filters there is often known model or signal information that is either ignored or dealt with heuristically. For instance, constraints on state values (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. A rigorous analytic method of incorporating state equality constraints in the Kalman filter is developed. The constraints may be time varying. At each time step the unconstrained Kalman filter solution is projected onto the state constraint surface. This significantly improves the prediction accuracy of the filter. The use of this algorithm is demonstrated on a simple nonlinear vehicle tracking problem.

611 citations

Book
29 Apr 2013

445 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
TL;DR: Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods.

7,090 citations

Journal ArticleDOI
TL;DR: This paper discusses natural biogeography and its mathematics, and then discusses how it can be used to solve optimization problems, and sees that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO).
Abstract: Biogeography is the study of the geographical distribution of biological organisms. Mathematical equations that govern the distribution of organisms were first discovered and developed during the 1960s. The mindset of the engineer is that we can learn from nature. This motivates the application of biogeography to optimization problems. Just as the mathematics of biological genetics inspired the development of genetic algorithms (GAs), and the mathematics of biological neurons inspired the development of artificial neural networks, this paper considers the mathematics of biogeography as the basis for the development of a new field: biogeography-based optimization (BBO). We discuss natural biogeography and its mathematics, and then discuss how it can be used to solve optimization problems. We see that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO). This makes BBO applicable to many of the same types of problems that GAs and PSO are used for, namely, high-dimension problems with multiple local optima. However, BBO also has some features that are unique among biology-based optimization methods. We demonstrate the performance of BBO on a set of 14 standard benchmarks and compare it with seven other biology-based optimization algorithms. We also demonstrate BBO on a real-world sensor selection problem for aircraft engine health estimation.

3,418 citations