scispace - formally typeset
Search or ask a question

Showing papers by "David G. Ginzinger published in 1996"


Journal ArticleDOI
05 Apr 1996-Science
TL;DR: A gene family from the spider Araneus diadematus was found to encode silk-forming proteins (fibroins) with different proportions of amorphous glycine-rich domains and crystal domains built from poly(alanine) and poly(glycine-alanine), which allows for a range of mechanical properties according to the crystal-forming potential of the constituent fibroins.
Abstract: Spiders produce a variety of silks that range from Lycra-like elastic fibers to Kevlar-like superfibers. A gene family from the spider Araneus diadematus was found to encode silk-forming proteins (fibroins) with different proportions of amorphous glycine-rich domains and crystal domains built from poly(alanine) and poly(glycine-alanine) repeat motifs. Spiders produce silks of different composition by gland-specific expression of this gene family, which allows for a range of mechanical properties according to the crystal-forming potential of the constituent fibroins. These principles of fiber property control may be important in the development of genetically engineered structural proteins.

423 citations


Journal ArticleDOI
TL;DR: Findings show that this LPL deficient cat can serve as an animal model of human LPL deficiency and will be useful for in vivo investigation of the relationship between triglyceride rich lipoproteins and atherogenic risk and for the assessment of new approaches for treatment of L PL deficiency, including gene therapy.
Abstract: Members of a domestic cat colony with chylomicronemia share many phenotypic features with human lipoprotein lipase (LPL) deficiency. Biochemical analysis reveals that these cats do have defective LPL catalytic activity and have a clinical phenotype very similar to human LPL deficiency. To determine the molecular basis underlying this biochemical phenotype, we have cloned the normal and affected cat LPL cDNAs and shown that the affected cat has a nucleotide change resulting in a substitution of arginine for glycine at residue 412 in exon 8. In vitro mutagenesis and expression studies, in addition to segregation analysis, have shown that this DNA change is the cause of LPL deficiency in this cat colony. Reduced body mass, growth rates, and increased stillbirth rates are observed in cats homozygous for this mutation. These findings show that this LPL deficient cat can serve as an animal model of human LPL deficiency and will be useful for in vivo investigation of the relationship between triglyceride rich lipoproteins and atherogenic risk and for the assessment of new approaches for treatment of LPL deficiency, including gene therapy.

74 citations


Journal ArticleDOI
TL;DR: The current status of the efforts to develop and test a comprehensive series of vectors and delivery systems for LPL gene transfer and expression in somatic cells in vitro, and ultimately in vivo, in a well-characterized naturally occurring feline model with LPL deficiency is reported.

5 citations