scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Clinical Investigation in 1996"


Journal ArticleDOI
TL;DR: Forms of hypertension associated with elevated circulating levels of angiotensin II may have unique vascular effects not shared by other forms of hypertension because they increase vascular smooth muscle .O2- production via NADH/NADPH oxidase activation.
Abstract: We tested the hypothesis that angiotensin II-induced hypertension is associated with an increase in vascular .O2- production, and characterized the oxidase involved in this process. Infusion of angiotensin II (0.7 mg/kg per d) increased systolic blood pressure and doubled vascular .O2- production (assessed by lucigenin chemiluminescence), predominantly from the vascular media. NE infusion (2.75 mg/kg per d) produced a similar degree of hypertension, but did not increase vascular .O2- production. Studies using various enzyme inhibitors and vascular homogenates suggested that the predominant source of .O2- activated by angiotensin II infusion is an NADH/NADPH-dependent, membrane-bound oxidase. Angiotensin II-, but not NE-, induced hypertension was associated with impaired relaxations to acetylcholine, the calcium ionophore A23187, and nitroglycerin. These relaxations were variably corrected by treatment of vessels with liposome-encapsulated superoxide dismutase. When Losartan was administered concomitantly with angiotensin II, vascular .O2- production and relaxations were normalized, demonstrating a role for the angiotensin type-1 receptor in these processes. We conclude that forms of hypertension associated with elevated circulating levels of angiotensin II may have unique vascular effects not shared by other forms of hypertension because they increase vascular smooth muscle .O2- production via NADH/NADPH oxidase activation.

2,435 citations


Journal ArticleDOI
TL;DR: Obese/insulin-resistant subjects are characterized by endothelial dysfunction and endothelial resistance to insulin's effect on enhancement of endothelium-dependent vasodilation, which could contribute to the increased risk of atherosclerosis in obese insulin- resistant subjects.
Abstract: To test the hypothesis that obesity/insulin resistance impairs both endothelium-dependent vasodilation and insulin-mediated augmentation of endothelium-dependent vasodilation, we studied leg blood flow (LBF) responses to graded intrafemoral artery infusions of methacholine chloride (MCh) or sodium nitroprusside (SNP) during saline infusion and euglycemic hyperinsulinemia in lean insulin-sensitive controls (C), in obese insulin-resistant subjects (OB), and in subjects with non-insulin-dependent diabetes mellitus (NIDDM). MCh induced increments in LBF were approximately 40% and 55% lower in OB and NIDDM, respectively, as compared with C (P < 0.05). Euglycemic hyperinsulinemia augmented the LBF response to MCh by - 50% in C (P < 0.05 vs saline) but not in OB and NIDDM. SNP caused comparable increments in LBF in all groups. Regression analysis revealed a significant inverse correlation between the maximal LBF change in response to MCh and body fat content. Thus, obesity/insulin resistance is associated with (a) blunted endothelium-dependent, but normal endothelium-independent vasodilation and (b) failure of euglycemic hyperinsulinemia to augment endothelium-dependent vasodilation. Therefore, obese/insulin-resistant subjects are characterized by endothelial dysfunction and endothelial resistance to insulin's effect on enhancement of endothelium-dependent vasodilation. This endothelial dysfunction could contribute to the increased risk of atherosclerosis in obese insulin-resistant subjects.

1,704 citations


Journal ArticleDOI
TL;DR: The findings suggest that leptin action in rat hypothalamus involves altered expression of key neuropeptide genes, and implicate leptin in the hypothalamic response to fasting.
Abstract: The hypothesis that leptin (OB protein) acts in the hypothalamus to reduce food intake and body weight is based primarily on evidence from leptin-deficient, ob/ob mice. To investigate whether leptin exerts similar effects in normal animals, we administered leptin intracerebroventricularly (icv) to Long-Evans rats. Leptin administration (3.5 microg icv) at the onset of nocturnal feeding reduced food intake by 50% at 1 h and by 42% at 4 h, as compared with vehicle-treated controls (both P < 0.05). To investigate the basis for this effect, we used in situ hybridization (ISH) to determine whether leptin alters expression of hypothalamic neuropeptides involved in energy homeostasis. Two injections of leptin (3.5 microg icv) during a 40 h fast significantly decreased levels of mRNA for neuropeptide Y (NPY, which stimulates food intake) in the arcuate nucleus (-24%) and increased levels of mRNA for corticotrophin releasing hormone (CRH, an inhibitor of food intake) in the paraventricular nucleus (by 38%) (both P < 0.05 vs. vehicle-treated controls). To investigate the anatomic basis for these effects, we measured leptin receptor gene expression in rat brain by ISH using a probe complementary to mRNA for all leptin receptor splice variants. Leptin receptor mRNA was densely concentrated in the arcuate nucleus, with lower levels present in the ventromedial and dorsomedial hypothalamic nuclei and other brain areas involved in energy balance. These findings suggest that leptin action in rat hypothalamus involves altered expression of key neuropeptide genes, and implicate leptin in the hypothalamic response to fasting.

1,515 citations


Journal ArticleDOI
TL;DR: It is demonstrated that free fatty acids induce insulin resistance in humans by initial inhibition of glucose transport/phosphorylation which is then followed by an approximately 50% reduction in both the rate of muscle glycogen synthesis and glucose oxidation.
Abstract: To examine the mechanism by which lipids cause insulin resistance in humans, skeletal muscle glycogen and glucose-6-phosphate concentrations were measured every 15 min by simultaneous 13C and 31P nuclear magnetic resonance spectroscopy in nine healthy subjects in the presence of low (0.18 +/- 0.02 mM [mean +/- SEM]; control) or high (1.93 +/- 0.04 mM; lipid infusion) plasma free fatty acid levels under euglycemic (approximately 5.2 mM) hyperinsulinemic (approximately 400 pM) clamp conditions for 6 h. During the initial 3.5 h of the clamp the rate of whole-body glucose uptake was not affected by lipid infusion, but it then decreased continuously to be approximately 46% of control values after 6 h (P < 0.00001). Augmented lipid oxidation was accompanied by a approximately 40% reduction of oxidative glucose metabolism starting during the third hour of lipid infusion (P < 0.05). Rates of muscle glycogen synthesis were similar during the first 3 h of lipid and control infusion, but thereafter decreased to approximately 50% of control values (4.0 +/- 1.0 vs. 9.3 +/- 1.6 mumol/[kg.min], P < 0.05). Reduction of muscle glycogen synthesis by elevated plasma free fatty acids was preceded by a fall of muscle glucose-6-phosphate concentrations starting at approximately 1.5 h (195 +/- 25 vs. control: 237 +/- 26 mM; P < 0.01). Therefore in contrast to the originally postulated mechanism in which free fatty acids were thought to inhibit insulin-stimulated glucose uptake in muscle through initial inhibition of pyruvate dehydrogenase these results demonstrate that free fatty acids induce insulin resistance in humans by initial inhibition of glucose transport/phosphorylation which is then followed by an approximately 50% reduction in both the rate of muscle glycogen synthesis and glucose oxidation.

1,488 citations


Journal ArticleDOI
TL;DR: It is shown here that the drugs loperamide, domperidone, and ondansetron are transported substrates for the mouse mdr1a P-GP and its human homologue MDR1, and the possible role that the drug-transporting P- GP(s) may play in the clinical use of many drugs, especially those with potential targets in the central nervous system.
Abstract: The mouse mdr1a (also called mdr3) P-GP is abundant in the blood-brain barrier, and its absence in mdr1a (-/-) mice leads to highly increased levels of the drugs ivermectin, vinblastine, digoxin, and cyclosporin A in the brain. We show here that the drugs loperamide, domperidone, and ondansetron are transported substrates for the mouse mdr1a P-GP and its human homologue MDR1. Phenytoin is a relatively weaker substrate for each, and the drugs haloperidol, clozapine, and flunitrazepam are transported hardly or not at all. Tissue distribution studies demonstrated that the relative brain penetration of radiolabeled ondansetron and loperamide (and their metabolites) is increased four- and sevenfold, respectively, in mdr1a (-/-) mice. A pilot toxicity study with oral loperamide showed that this peripherally acting antidiarrheal agent gains potent opiatelike activity in the central nervous system of mdr1a (-/-) mice. mdr1a (-/-) mice also showed increased sensitivity to neurolepticlike side effects of oral domperidone. These results point to the possible role that the drug-transporting P-GP(s) may play in the clinical use of many drugs, especially those with potential targets in the central nervous system.

1,248 citations


Journal ArticleDOI
TL;DR: A simple genetic manipulation can be used to select essentially pure cultures of cardiomyocytes from differentiating ES cells that are suitable for the formation of intracardiac grafts, and should be applicable to all ES-derived cell lineages.
Abstract: This study describes a simple approach to generate relatively pure cultures of cardiomyocytes from differentiating murine embryonic stem (ES) cells. A fusion gene consisting of the alpha-cardiac myosin heavy chain promoter and a cDNA encoding aminoglycoside phosphotransferase was stably transfected into pluripotent ES cells. The resulting cell lines were differentiated in vitro and subjected to G418 selection. Immunocytological and ultrastructural analyses demonstrated that the selected cardiomyocyte cultures (> 99% pure) were highly differentiated. G418 selected cardiomyocytes were tested for their ability to form grafts in the hearts of adult dystrophic mice. The fate of the engrafted cells was monitored by antidystrophin immunohistology, as well as by PCR analysis with primers specific for the myosin heavy chain-aminoglycoside phosphotransferase transgene. Both analyses revealed the presence of ES-derived cardiomyocyte grafts for as long as 7 wk after implantation, the latest time point analyzed. These studies indicate that a simple genetic manipulation can be used to select essentially pure cultures of cardiomyocytes from differentiating ES cells. Moreover, the resulting cardiomyocytes are suitable for the formation of intracardiac grafts. This selection approach should be applicable to all ES-derived cell lineages.

1,230 citations


Journal ArticleDOI
TL;DR: The authors characterized the progressive stages of chronic intestinal inflammation that develops spontaneously in specific pathogen-free (SPF) mice with a targeted disruption in the IL-10 gene (IL-10-/-) and showed that inflammatory changes first appear in the cecum, ascending and transverse colon of 3-week-old mutants.
Abstract: We have characterized the progressive stages of chronic intestinal inflammation that develops spontaneously in specific pathogen-free (SPF) mice with a targeted disruption in the IL-10 gene (IL-10-/-) Our longitudinal studies showed that inflammatory changes first appear in the cecum, ascending and transverse colon of 3-wk-old mutants As the disease progressed, lesions appeared in the remainder of the colon and in the rectum Some aged IL-10-/- mice also developed inflammation in the small intestine Prolonged disease with transmural lesions and a high incidence of colorectal adenocarcinomas (60%) was observed in 6-mo-old mutants Mechanistic studies have associated uncontrolled cytokine production by activated macrophages and CD4+ Th1-like T cells with the enterocolitis exhibited by IL-10-/- mice A major role for a pathogenic Th1 response was further suggested by showing that anti-IFNgamma antibody (Ab) treatment significantly attenuated intestinal inflammation in young IL-10-/- mice When weanlings were treated with IL-10, they failed to develop any signs of intestinal inflammation Interestingly, IL-10 treatment of adults was not curative but did ameliorate disease progression Our studies have also shown that inheritable factors strongly influence the disease susceptibility of IL-10-/- mice In 3-mo-old mutants, intestinal lesions were most severe in IL-10-/- 129/SvEv and IL-10-/- BALB/c strains, of intermediate severity in the IL-10-/- 129 x C57BL/6J outbreds, and least severe in the IL-10-/- C57BL/6J strain

1,134 citations


Journal ArticleDOI
TL;DR: It is shown that in vivo generated macrophage foam cells produce superoxide, nitric oxide, and hydrogen peroxide after isolation from hypercholesterolemic rabbits and reactive oxygen species can modulate matrix degradation in areas of high oxidant stress and could therefore contribute to instability of atherosclerotic plaques.
Abstract: Vulnerable areas of atherosclerotic plaques often contain lipid-laden macrophages and display matrix metalloproteinase activity. We hypothesized that reactive oxygen species released by macrophage-derived foam cells could trigger activation of latent proforms of metalloproteinases in the vascular interstitium. We showed that in vivo generated macrophage foam cells produce superoxide, nitric oxide, and hydrogen peroxide after isolation from hypercholesterolemic rabbits. Effects of these reactive oxygens and that of peroxynitrite, likely to result from simultaneous production of nitric oxide and superoxide, were tested in vitro using metalloproteinases secreted by cultured human vascular smooth muscle cells. Enzymes in culture media or affinity-purified (pro-MMP-2 and MMP-9) were examined by SDS-PAGE zymography, Western blotting, and enzymatic assays. Under the conditions used, incubation with xanthine/xanthine oxidase increased the amount of active gelatinases, while nitric oxide donors had no noticeable effect. Incubation with peroxynitrite resulted in nitration of MMP-2 and endowed it with collagenolytic activity. Hydrogen peroxide treatment showed a catalase-reversible biphasic effect (gelatinase activation at concentrations of 4 microM, inhibition at > or = 10-50 microM). Thus, reactive oxygen species can modulate matrix degradation in areas of high oxidant stress and could therefore contribute to instability of atherosclerotic plaques.

1,117 citations


Journal ArticleDOI
TL;DR: This review will deal with the mechanisms of action of bisphosphonates and in vitro results, as well as results both in animals and humans, will be integrated in an attempt to deduce the current state of the art.
Abstract: Because of its failure to act when given orally and its rapid hydrolysis when given parenterally, pyrophosphate was used therapeutically only in scintigraphy and against dental calculus. This prompted us to search for analogs that showed similar physicochemical activity but resisted enzymatic hydrolysis and, therefore, would not be degraded metabolically. The bisphosphonates fulfilled these conditions. This review will deal with the mechanisms of action of these compounds. In vitro results, as well as results both in animals and humans, will be integrated in an attempt to deduce the current state of the art. Various reviews have been published recently on bisphosphonates and may be consulted also for information on other aspects (8 ‐14). Since the literature in this field is plentiful, selective citation was necessary. Priority is given to papers dealing with the mechanisms of action. Since many papers often deal with the same finding, in most cases only the first ones are quoted. Subsequent papers are quoted only if they convey new knowledge.

1,087 citations


Journal ArticleDOI
TL;DR: Evidence is provided that collagenase-3 (MMP-13), an enzyme recently cloned from human breast carcinoma, is expressed by chondrocytes in human osteoarthritic cartilage and its activity against type II collagen suggest that the enzyme plays a significant role in cartilage collagen degradation, and must form part of a complex target for proposed therapeutic interventions based on collagenase inhibition.
Abstract: Proteolysis of triple-helical collagen is an important step in the progression toward irreversible tissue damage in osteoarthritis. Earlier work on the expression of enzymes in cartilage suggested that collagenase-1 (MMP-1) contributes to the process. Degenerate reverse transcription polymerase chain reaction experiments, Northern blot analysis, and direct immunodetection have now provided evidence that collagenase-3 (MMP-13), an enzyme recently cloned from human breast carcinoma, is expressed by chondrocytes in human osteoarthritic cartilage. Variable levels of MMP-13 and MMP-1 in cartilage was significantly induced at both the message and protein levels by interleukin-1 alpha. Recombinant MMP-13 cleaved type II collagen to give characteristic 3/4 and 1/4 fragments; however, MMP-13 turned over type II collagen at least 10 times faster than MMP-1. Experiments with intact type II collagen as well as a synthetic peptide suggested that MMP-13 cleaved type II collagen at the same bond as MMP-1, but this was then followed by a secondary cleavage that removed three amino acids from the 1/4 fragment amino terminus. The expression of MMP-13 in osteoarthritic cartilage and its activity against type II collagen suggest that the enzyme plays a significant role in cartilage collagen degradation, and must consequently form part of a complex target for proposed therapeutic interventions based on collagenase inhibition.

954 citations


Journal ArticleDOI
TL;DR: Three matrix turnover phases are identified and evidence is illustrated for a lack of increased synthesis of aggrecan and type II procollagen, but also by an increase in collagen type II denaturation and type I Procollagen synthesis, both dependent on age and grade of tissue degeneration.
Abstract: Very little is known about the turnover of extracellular matrix in the human intervertebral disc. We measured concentrations of specific molecules reflecting matrix synthesis and degradation in predetermined regions of 121 human lumbar intervertebral discs and correlated them with ageing and Thompson grade of degeneration. Synthesis in intervertebral discs, measured by immunoassay of the content of a putative aggrecan biosynthesis marker (846) and the content of types I and II procollagen markers, is highest in the neonatal and 2-5-yr age groups. The contents of these epitopes/molecules progressively diminished with increasing age. However, in the oldest age group (60-80 yr) and in highly degenerated discs, the type I procollagen epitope level increased significantly. The percentage of denatured type II collagen, assessed by the presence of an epitope that is exposed with cleavage of type II collagen, increased twofold from the neonatal discs to the young 2-5-yr age group. Thereafter, the percentage progressively decreased with increasing age; however, it increased significantly in the oldest group and in highly degenerate discs. We identified three matrix turnover phases. Phase I (growth) is characterized by active synthesis of matrix molecules and active denaturation of type II collagen. Phase II (maturation and ageing) is distinguished by a progressive drop in synthetic activity and a progressive reduction in denaturation of type 11 collagen. Phase III (degeneration and fibrotic) is illustrated by evidence for a lack of increased synthesis of aggrecan and type II procollagen, but also by an increase in collagen type II denaturation and type I procollagen synthesis, both dependent on age and grade of tissue degeneration.

Journal ArticleDOI
TL;DR: It is concluded that endothelial dysfunction in forearm resistance vessels of patients with non-insulin-dependent diabetes mellitus can be improved by administration of the antioxidant, vitamin C, and support the hypothesis that nitric oxide inactivation by oxygen-derived free radicals contributes to abnormal vascular reactivity in diabetes.
Abstract: Endothelium-dependent vasodilation is impaired in humans with diabetes mellitus. Inactivation of endothelium-derived nitric oxide by oxygen-derived free radicals contributes to abnormal vascular reactivity in experimental models of diabetes. To determine whether this observation is relevant to humans, we tested the hypothesis that the antioxidant, vitamin C, could improve endothelium-dependent vasodilation in forearm resistance vessels of patients with non-insulin-dependent diabetes mellitus. We studied 10 diabetic subjects and 10 age-matched, nondiabetic control subjects. Forearm blood flow was determined by venous occlusion plethysmography. Endothelium-dependent vasodilation was assessed by intraarterial infusion of methacholine (0.3-10 micrograms/min). Endothelium-independent vasodilation was measured by intraarterial infusion of nitroprusside (0.3-10 micrograms/min) and verapamil (10-300 micrograms/min). Forearm blood flow dose-response curves were determined for each drug before and during concomitant intraarterial administration of vitamin C (24 mg/min). In diabetic subjects, endothelium-dependent vasodilation to methacholine was augmented by simultaneous infusion of vitamin C (P = 0.002); in contrast, endothelium-independent vasodilation to nitroprusside and to verapamil were not affected by concomitant infusion of vitamin C (P = 0.9 and P = 0.4, respectively). In nondiabetic subjects, vitamin C administration did not alter endothelium-dependent vasodilation (P = 0.8). We conclude that endothelial dysfunction in forearm resistance vessels of patients with non-insulin-dependent diabetes mellitus can be improved by administration of the antioxidant, vitamin C. These findings support the hypothesis that nitric oxide inactivation by oxygen-derived free radicals contributes to abnormal vascular reactivity in diabetes.

Journal Article
TL;DR: In this article, anorexia and weight loss in hamsters were associated with increased levels of leptin in mRNA in adipose tissue and increased food intake in response to gram negative infections.
Abstract: The expression of leptin, the ob gene product, is increased in adipose tissue in response to feeding and energy repletion, while leptin decreases food intake. Because adipose tissue gene expression is regulated by cytokines induced during infection and because infection is associated with anorexia, we tested whether induction of leptin might occur during the host response to infection. Administration of endotoxin (LPS), a model for gram negative infections, induces profound anorexia and weight loss in hamsters. In fasted adipose tissue to levels similar to fed control animals. There is a strong inverse correlation between mRNA levels of leptin and subsequent food intake. TNF and IL-1, mediators of the host response to LPS, also induced anorexia and increased levels of leptin in mRNA in adipose tissue. As assessed by immuknoprecipitation and Western blotting, circulating leptin protein is regulated by LPS and cytokines in parallel to regulation of adipose tissue leptin mRNA. Induction of leptin during the host response to infection may contribute to the anorexia of infection.

Journal ArticleDOI
TL;DR: Results indicate that tumor-produced PTHrP can cause local bone destruction in breast cancer metastatic to bone, even in the absence of hypercalcemia or increased circulating plasma concentrations of P THrP.
Abstract: Breast cancer almost invariably metastasizes to bone in patients with advanced disease and causes local osteolysis. Much of the morbidity of advanced breast cancer is a consequence of this process. Despite the importance of the problem, little is known of the pathophysiology of local osteolysis in the skeleton or its prevention and treatment. Observations in patients with bone metastases suggest that breast cancer cells in bone express parathyroid hormone-related protein (PTHrP) more frequently than in soft tissue sites of metastasis or in the primary tumor. Thus, the role of PTHrP in the causation of breast cancer metastases in bone was examined using human breast cancer cell lines. Four of eight established human breast cancer cell lines expressed PTHrP and one of these cell lines, MDA-MB-231, was studied in detail using an in vivo model of osteolytic metastases. Mice inoculated with MDA-MB-231 cells developed osteolytic bone metastasis without hypercalcemia or increased plasma PTHrP concentrations. PTHrP concentrations in bone marrow plasma from femurs affected with osteolytic lesions were increased 2.5-fold over corresponding plasma PTHrP concentrations. In a separate experiment, mice were treated with either a monoclonal antibody directed against PTHrP(1-34), control IgG, or nothing before tumor inoculation with MDA-MB-231 and twice per week for 26 d. Total area of osteolytic lesions was significantly lower in mice treated with PTHrP antibodies compared with mice receiving control IgG or no treatment. Histomorphometric analysis of bone revealed decreased osteoclast number per millimeter of tumor/bone interface and increased bone area, as well as decreased tumor area, in tumor-bearing animals treated with PTHrP antibodies compared with respective controls. These results indicate that tumor-produced PTHrP can cause local bone destruction in breast cancer metastatic to bone, even in the absence of hypercalcemia or increased circulating plasma concentrations of PTHrP. Thus, PTHrP may have an important pathogenetic role in the establishment of osteolytic bone lesions in breast cancer. Neutralizing antibodies to PTHrP may reduce the development of destructive bone lesions as well as the growth of tumor cells in bone.

Journal ArticleDOI
TL;DR: It is indicated that the NH2-terminal domain of SREBP-1a can produce major effects on lipid synthesis and storage in the liver, owing to the engorgement of hepatocytes with cholesterol and triglycerides.
Abstract: The NH2-terminal domain of sterol-regulatory element binding protein-1a (SREBP-1a) activates transcription of genes encoding enzymes of cholesterol and fatty acid biosynthesis in cultured cells. This domain is synthesized as part of a membrane-bound precursor that is attached to the nuclear envelope and endoplasmic reticulum. In sterol-depleted cells a two-step proteolytic process releases this NH2-terminal domain, which enters the nucleus and activates transcription. Proteolysis is suppressed by sterols, thereby suppressing transcription. In the current experiments we produce transgenic mice that overexpress a truncated version of human SREBP-1a that includes the NH2-terminal domain but lacks the membrane attachment site. This protein enters the nucleus without a requirement for proteolysis, and therefore it cannot be down-regulated. Expression was driven by the phosphoenolpyruvate carboxykinase (PEPCK) promoter, which gives high level expression in liver. When placed on a low carbohydrate/high protein diet to induce the PEPCK promoter, the transgenic mice developed progressive and massive enlargement of the liver, owing to the engorgement of hepatocytes with cholesterol and triglycerides. The mRNAs encoding 3-hydroxy-3-methylglutaryl CoA (HMG CoA) synthase, HMG CoA reductase, squalene synthase, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1 were all elevated markedly, as was the LDL receptor mRNA. The rates of cholesterol and fatty acid synthesis in liver were elevated 5- and 25-fold, respectively. Remarkably, plasma lipid levels were not elevated. The amount of white adipose tissue decreased progressively as the liver enlarged. These studies indicate that the NH2-terminal domain of SREBP-1a can produce major effects on lipid synthesis and storage in the liver.

Journal ArticleDOI
TL;DR: Induction of leptin during the host response to infection may contribute to the anorexia of infection, as assessed by immuknoprecipitation and Western blotting.
Abstract: The expression of leptin, the ob gene product, is increased in adipose tissue in response to feeding and energy repletion, while leptin decreases food intake. Because adipose tissue gene expression is regulated by cytokines induced during infection and because infection is associated with anorexia, we tested whether induction of leptin might occur during the host response to infection. Administration of endotoxin (LPS), a model for gram negative infections, induces profound anorexia and weight loss in hamsters. In fasted adipose tissue to levels similar to fed control animals. There is a strong inverse correlation between mRNA levels of leptin and subsequent food intake. TNF and IL-1, mediators of the host response to LPS, also induced anorexia and increased levels of leptin in mRNA in adipose tissue. As assessed by immuknoprecipitation and Western blotting, circulating leptin protein is regulated by LPS and cytokines in parallel to regulation of adipose tissue leptin mRNA. Induction of leptin during the host response to infection may contribute to the anorexia of infection.

Journal ArticleDOI
TL;DR: Activated NF-kappaB was detected in the fibrotic-thickened intima/media and atheromatous areas of the atherosclerotic lesion and electrophoretic mobility shift assays and colocalization of activated NF- kappaB with NF-KappaB target gene expression suggest functional implications for this transcription factor in the atherological lesion.
Abstract: Nuclear factor-kappa B (NF-kappaB)/Rel transcription factors play an important role in the inducible regulation of a variety of genes involved in the inflammatory and proliferative responses of cells. The present study was designed to elucidate the implication of NF-kappaB/Rel in the pathogenesis of atherosclerosis. Activation of the dimeric NF-kappaB complex is regulated at a posttranslational level and requires the release of the inhibitor protein IkappaB. The newly developed mAb alpha-p65mAb recognizes the IkappaB binding region on the p65 (RelA) DNA binding subunit and therefore selectively reacts with p65 in activated NF-kappaB. Using immunofluorescence and immunohistochemical techniques, activated NF-kappaB was detected in the fibrotic-thickened intima/media and atheromatous areas of the atherosclerotic lesion. Activation of NF-kappaB was identified in smooth muscle cells, macrophages, and endothelial cells. Little or no activated NF-kappaB was detected in vessels lacking atherosclerosis. Electrophoretic mobility shift assays and colocalization of activated NF-kappaB with NF-kappaB target gene expression suggest functional implications for this transcription factor in the atherosclerotic lesion. This study demonstrates the presence of activated NF-kappaB in human atherosclerotic tissue for the first time. Atherosclerosis, characterized by features of chronic inflammation and proliferative processes, may be a paradigm for the involvement of NF-kappaB/Rel in chronic inflammatory disease.

Journal ArticleDOI
TL;DR: The hypothesis that HA fragments generated during inflammation induce the expression of macrophage genes which are important in the development and maintenance of the inflammatory response is supported.
Abstract: Hyaluronan (HA) is a glycosaminoglycan constituent of extracellular matrix In its native form HA exists as a high molecular weight polymer, but during inflammation lower molecular weight fragments accumulate We have identified a collection of inflammatory genes induced in macrophages by HA fragments but not by high molecular weight HA These include several members of the chemokine gene family: macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, cytokine responsive gene-2, monocyte chemoattractant protein-1, and regulated on activation, normal T cell expressed and secreted HA fragments as small as hexamers are capable of inducing expression of these genes in a mouse alveolar macrophage cell line, and monoclonal antibody to the HA receptor CD44 completely blocks binding of fluorescein-labeled HA to these cells and significantly inhibits HA-induced gene expression We also investigated the ability of HA fragments to induce chemokine gene expression in human alveolar macrophages from patients with idiopathic pulmonary fibrosis and found that interleukin-8 mRNA is markedly induced These data support the hypothesis that HA fragments generated during inflammation induce the expression of macrophage genes which are important in the development and maintenance of the inflammatory response

Journal ArticleDOI
TL;DR: Normal luminal bacteria predictably and uniformly induce chronic colonic, gastric and systemic inflammation in B27 transgenic F344 rats, but all bacterial species do not have equal activities.
Abstract: Genetic and environmental factors are important in the pathogenesis of clinical and experimental chronic intestinal inflammation. We investigated the influence of normal luminal bacteria and several groups of selected bacterial strains on spontaneous gastrointestinal and systemic inflammation in HLA-B27 transgenic rats. Rats maintained germfree for 3-9 mo were compared with littermates conventionalized with specific pathogen-free bacteria. Subsequently, germfree transgenic rats were colonized with groups of five to eight bacteria that were either facultative or strictly anaerobic. Transgenic germfree rats had no gastroduodenitis, colitis, or arthritis, but developed epididymitis and dermatitis to the same degree as conventionalized rats. Colonic proinflammatory cytokine expression was increased in transgenic conventionalized rats but was undetectable in germfree and nontransgenic rats. Colitis progressively increased over the first 4 wk of bacterial exposure, then plateaued. Only transgenic rats colonized with defined bacterial cocktails which contained Bacteroides spp. had colitis and gastritis. Normal luminal bacteria predictably and uniformly induce chronic colonic, gastric and systemic inflammation in B27 transgenic F344 rats, but all bacterial species do not have equal activities.

Journal ArticleDOI
TL;DR: The nocturnal rise in leptin observed in the present study resembles those reported for prolactin, thyroid-stimulating hormone, and free fatty acids and is speculated to have an effect in suppressing appetite during the night while sleeping.
Abstract: We studied 24-h profiles of circulating leptin levels using a sensitive and specific RIA in lean controls and obese subjects with or without non-insulin-dependent diabetes mellitus (NIDDM) during normal routine activity. Serum leptin levels were significantly higher in obese (41.7 +/- 9.0 ng/ml; n = 11) and obese NIDDM (30.8 +/- 6.7; n = 9) subjects compared with those in lean controls (12.0 +/- 4.4, n = 6). In all the three groups, serum leptin levels were highest between midnight and early morning hours and lowest around noon to midafternoon. The nocturnal rise in leptin levels was significant when data were analyzed by ANOVA (lean: F = 3.17, P 0.05) were observed between circulating levels of leptin and either insulin or glucose levels in any of the 20 subjects studied for 24-h profiles. The nocturnal rise in leptin observed in the present study resembles those reported for prolactin, thyroid-stimulating hormone, and free fatty acids. We speculate that the nocturnal rise in leptin could have an effect in suppressing appetite during the night while sleeping.

Journal ArticleDOI
TL;DR: The ability of the appropriate stimulus to drive cardiomyocytes into apoptosis indicated that these cells were primed for apoptosis and were susceptible to clinically relevant apoptotic triggers, such as TNFalpha, suggest that the elevated TNF alpha levels seen in a variety of clinical conditions, including sepsis and ischemic myocardial disorders, may contribute to TNFAlpha-induced cardiac cell death.
Abstract: In the present study, it was shown that physiologically relevant levels of the proinflammatory cytokine TNFalpha induced apoptosis in rat cardiomyocytes in vitro, as quantified by single cell microgel electrophoresis of nuclei ("cardiac comets") as well as by morphological and biochemical criteria. It was also shown that TNFalpha stimulated production of the endogenous second messenger, sphingosine, suggesting sphingolipid involvement in TNFalpha-mediated cardiomyocyte apoptosis. Consistent with this hypothesis, sphingosine strongly induced cardiomyocyte apoptosis. The ability of the appropriate stimulus to drive cardiomyocytes into apoptosis indicated that these cells were primed for apoptosis and were susceptible to clinically relevant apoptotic triggers, such as TNFalpha. These findings suggest that the elevated TNFalpha levels seen in a variety of clinical conditions, including sepsis and ischemic myocardial disorders, may contribute to TNFalpha-induced cardiac cell death. Cardiomyocyte apoptosis is also discussed in terms of its potential beneficial role in limiting the area of cardiac cell involvement as a consequence of myocardial infarction, viral infection, and primary cardiac tumors.

Journal ArticleDOI
TL;DR: TNF is expressed in human muscle, and is expressed at a higher level in the muscle tissue and in the cultured muscle cells from insulin resistant and diabetic subjects, which suggest another mechanism by which TNF may play an important role in human insulin resistance.
Abstract: TNFalpha is orverexpressed in the adipose tissue of obese rodents and humans, and is associated with insulin resistance. To more closely link TNF expression with whole body insulin action, we examined the expression of TNF by muscle, which is responsible for the majority of glucose uptake in vivo. Using RT-PCR, TNF was detected in human heart, in skeletal muscle from humans and rats, and in cultured human myocytes. Using competitive RT-PCR, TNF was quantitated in the muscle biopsy specimens from 15 subjects whose insulin sensitivity had been characterized using the glucose clamp. technique. TNF expression in the insulin resistant subjects and the diabetic patients was fourfold higher than in the insulin sensitive subjects, and there was a significant inverse linear relationship between maximal glucose disposal rate and muscle TNF (r = -0.60, P < 0.02). In nine subjects, muscle cells from vastus lateralis muscle biopsies were placed into tissue culture for 4 wk, and induced to differentiate into myotubes. TNF was secreted into the medium from these cells, and cells from diabetic patients expressed threefold more TNF than cells from nondiabetic subjects. Thus, TNF is expressed in human muscle, and is expressed at a higher level in the muscle tissue and in the cultured muscle cells from insulin resistant and diabetic subjects. These data suggest another mechanism by which TNF may play an important role in human insulin resistance.

Journal ArticleDOI
TL;DR: The data suggest that NO is a novel effector of insulin signaling pathways that are also involved with glucose metabolism, and that PI 3-kinase activity is required for insulin-stimulated glucose transport.
Abstract: Hypertension is associated with insulin-resistant states such as diabetes and obesity. Nitric oxide (NO) contributes to regulation of blood pressure. To gain insight into potential mechanisms linking hypertension with insulin resistance we directly measured and characterized NO production from human umbilical vein endothelial cells (HUVEC) in response to insulin using an amperometric NO-selective electrode. Insulin stimulation of HUVEC resulted in rapid, dose-dependent production of NO with a maximal response of approximately 100 nM NO (200,000 cells in 2 ml media; ED50 approximately 500 nM insulin). Although HUVEC have many more IGF-1 receptors than insulin receptors (approximately 400,000, and approximately 40,000 per cell respectively), a maximally stimulating dose of IGF-1 generated a smaller response than insulin (40 nM NO; ED50 approximately 100 nM IGF-1). Stimulation of HUVEC with PDGF did not result in measurable NO production. The effects of insulin and IGF-1 were completely blocked by inhibitors of either tyrosine kinase (genestein) or nitric oxide synthase (L-NAME). Wortmannin (an inhibitor of phosphatidylinositol 3-kinase [PI 3-kinase]) inhibited insulin-stimulated production of NO by approximately 50%. Since PI 3-kinase activity is required for insulin-stimulated glucose transport, our data suggest that NO is a novel effector of insulin signaling pathways that are also involved with glucose metabolism.

Journal ArticleDOI
TL;DR: Immunohistochemistry on human nasal polyp with antieotaxin mAbs showed that certain leukocytes as well as respiratory epithelium were intensely immunoreactive, and eosinophil infiltration occurred at sites of eotAXin upregulation.
Abstract: The CC chemokine eotaxin, identified in guinea pigs and also recently in mice, may be a key element for the selective recruitment of eosinophils to certain inflamed tissues. Using a partial mouse eotaxin CDNA probe, the human eotaxin gene was cloned and found to be 61.8 and 63.2% identical at the amino acid level to guinea pig and mouse eotaxin. Human eotaxin protein was a strong and specific eosinophil chemoattractant in vitro and was an effective eosinophil chemoattractant when injected into the skin of a rhesus monkey. Radiolabeled eotaxin was used to identify a high affinity receptor on eosinophils (0.52 nM Kd), expressed at 4.8 x 10(4) sites per cell. This receptor also bound RANTES and monocyte chemotactic protein-3 with lower affinity, but not macrophage inflammatory protein-1 alpha. Eotaxin could desensitize calcium responses of eosinophils to RANTES and monocyte chemotactic protein-3, although RANTES was able to only partially desensitize eosinophil calcium responses to eotaxin. Immunohistochemistry on human nasal polyp with antieotaxin mAbs showed that certain leukocytes as well as respiratory epithelium were intensely immunoreactive, and eosinophil infiltration occurred at sites of eotaxin upregulation. Thus eotaxin in humans is a potent and selective eosinophil chemoattractant that is expressed by a variety cell types in certain inflammatory conditions.

Journal ArticleDOI
TL;DR: It is reported that renal ICAM-1 mRNA levels and systemic levels of the cytokines IL-1 and TNF-alpha increase 1 h after ischemia/ reperfusion in the mouse, likely acting via potentiation of neutrophilendothelial interactions.
Abstract: Studies in the rat have pointed to a role for intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of acute tubular necrosis. These studies used antibodies, which may have nonspecific effects. We report that renal ICAM-1 mRNA levels and systemic levels of the cytokines IL-1 and TNF-alpha increase 1 h after ischemia/ reperfusion in the mouse. We sought direct proof for a critical role for ICAM-1 in the pathophysiology of ischemic renal failure using mutant mice genetically deficient in ICAM-1. ICAM-1 is undetectable in mutant mice in contrast with normal mice, in which ICAM-1 is prominent in the endothelium of the vasa recta. Mutant mice are protected from acute renal ischemic injury as judged by serum creatinine, renal histology, and animal survival . Renal leukocyte infiltration, quantitated morphologically and by measuring tissue myeloperoxidase, was markedly less in ICAM-1-deficient than control mice. To evaluate whether prevention of neutrophil infiltration could be responsible for the protection observed in the mutant mice, we treated normal mice with antineutrophil serum to reduce absolute neutrophil counts to < 100 cells/mm3. These neutrophil-depleted animals were protected against ischemic renal failure. Anti-1CAm-1 antibody protected normal mice against renal ischemic injury but did not provide additional protection to neutrophil-depleted animals. Thus, ICAM-1 is a key mediator of ischemic acute renal failure likely acting via potentiation of neutrophilendothelial interactions.

Journal ArticleDOI
TL;DR: Responses to all hepatitis C virus antigens were significantly more vigorous and more frequently detectable in patients who normalized transaminase levels than in those who did not, suggesting that the vigor of the T cell response during the early stages of infection may be a critical determinant of disease resolution and control.
Abstract: The anti-viral T cell response is believed to play a central role in the pathogenesis of hepatitis C virus infection. Since chronic evolution occurs in > 50% of HCV infections, the sequential analysis of the T cell response from the early clinical stages of disease may contribute to define the features of the T cell response associated with recovery or chronic viral persistence. For this purpose, 21 subjects with acute hepatitis C virus infection were sequentially followed for an average time of 44 wk. Twelve patients normalized transaminase values that remained normal throughout the follow-up period; all but two cleared hepatitis C virus-RNA from serum. The remaining nine patients showed persistent viremia and elevated transaminases. Analysis of the peripheral blood T cell proliferative response to core, E1, E2, NS3, NS4, and NS5 recombinant antigens and synthetic peptides showed that responses to all hepatitis C virus antigens, except E1, were significantly more vigorous and more frequently detectable in patients who normalized transaminase levels than in those who did not. By sequential evaluation of the T cell response, a difference between the two groups of patients was already detectable at the very early stages of acute infection and then maintained throughout the follow-up period. The results suggest that the vigor of the T cell response during the early stages of infection may be a critical determinant of disease resolution and control of infection.

Journal ArticleDOI
TL;DR: Skeletal myoblasts can establish new muscle tissue when grafted into injured hearts, and this muscle can contract when stimulated electrically, because the grafts convert to fatigue-resistant, slow twitch fibers, this new muscle may be suited to a cardiac work load.
Abstract: Myocardial infarcts heal by scarring because myocardium cannot regenerate. To determine if skeletal myoblasts could establish new contractile tissue, hearts of adult inbred rats were injured by freeze-thaw, and 3-4.5 x 10(6) neonatal skeletal muscle cells were transplanted immediately thereafter. At 1 d the graft cells were proliferating and did not express myosin heavy chain (MHC). By 3 d, multinucleated myotubes were present which expressed both embryonic and fast fiber MHCs. At 2 wk, electron microscopy demonstrated possible satellite stem cells. By 7 wk the grafts began expressing beta-MHC, a hallmark of the slow fiber phenotype; coexpression of embryonic, fast, and beta-MHC continued through 3 mo. Transplanting myoblasts 1 wk after injury yielded comparable results, except that grafts expressed beta-MHC sooner (by 2 wk). Grafts never expressed cardiac-specific MHC-alpha. Wounds containing 2-wk-old myoblast grafts contracted when stimulated ex vivo, and high frequency stimulation induced tetanus. Furthermore, the grafts could perform a cardiac-like duty cycle, alternating tetanus and relaxation, for at least 6 min. Thus, skeletal myoblasts can establish new muscle tissue when grafted into injured hearts, and this muscle can contract when stimulated electrically. Because the grafts convert to fatigue-resistant, slow twitch fibers, this new muscle may be suited to a cardiac work load.


Journal ArticleDOI
TL;DR: Findings indicate that diabetes and galactosemia lead to accelerated death in situ of both retinal pericytes and endothelial cells; the event is specific for vascular cells; it precedes histological evidence of retinopathy; and it can be induced by isolated hyperhexosemia.
Abstract: To reconstruct the mechanisms for the vasoobliteration that transforms diabetic retinopathy into an ischemic retinopathy, we compared the occurrence of cell death in situ in retinal microvessels of diabetic and nondiabetic individuals. Trypsin digests and sections prepared from the retinas of seven patients (age 67 +/- 7 yr) with .9 +/- 4 yr of diabetes and eight age- and sex-matched nondiabetic controls were studied with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction which detects preferentially apoptotic DNA fragmentation. The count of total TUNEL+ nuclei was significantly greater in the microvessels of diabetic (13 +/- 12 per one-sixth of retina) than control subjects (1.3 +/- 1.4, P = 0.0016), as were the counts of TUNEL+ pericytes and endothelial cells (P < 0.006). The neural retinas from both diabetic and nondiabetic subjects were uniformly TUNEL-. Retinal microvessels of rats with short duration of experimental diabetes or galactosemia and absent or minimal morphological changes of retinopathy, showed TUNEL+ pericytes and endothelial cells, which were absent in control rats. These findings indicate that (a) diabetes and galactosemia lead to accelerated death in situ of both retinal pericytes and endothelial cells; (b) the event is specific for vascular cells; (c) it precedes histological evidence of retinopathy; and (d) it can be induced by isolated hyperhexosemia. A cycle of accelerated death and renewal of endothelial cells may contribute to vascular architectural changes and, upon exhaustion of replicative life span, to capillary obliteration.

Journal ArticleDOI
TL;DR: PPAR gamma 2 mRNA expression is most abundant in adipocytes in normal mice, but lower level expression is seen in skeletal muscle, which demonstrates in vivo modulation of PPAR gamma mRNA levels over a fourfold range and provide an additional level of regulation for the control of adipocyte development and function.
Abstract: The orphan nuclear receptor, peroxisome proliferator-activated receptor (PPAR) gamma, is implicated in mediating expression of fat-specific genes and in activating the program of adipocyte differentiation The potential for regulation of PPAR gamma gene expression in vivo is unknown We cloned a partial mouse PPAR gamma cDNA and developed an RNase protection assay that permits simultaneous quantitation of mRNAs for both gamma l and gamma 2 isoforms encoded by the PPAR gamma gene Probes for detection of adipocyte P2, the obese gene product, leptin, and 18S mRNAs were also employed Both gamma l and gamma 2 mRNAs were abundantly expressed in adipose tissue PPAR gamma 1 expression was also detected at lower levels in liver, spleen, and heart; whereas, gamma l and gamma 2 mRNA were expressed at low levels in skeletal muscle Adipose tissue levels of gamma l and gamma 2 were not altered in two murine models of obesity (gold thioglucose and ob/ob), but were modestly increased in mice with toxigene-induced brown fat ablation uncoupling protein diphtheria toxin A mice Fasting (12-48 h) was associated with an 80% fall in PPAR gamma 2 and a 50% fall in PPAR gamma mRNA levels in adipose tissue Western blot analysis demonstrated a marked effect of fasting to reduce PPAR gamma protein levels in adipose tissue Similar effects of fasting on PPAR gamma mRNAs were noted in all three models of obesity Insulin-deficient (streptozotocin) diabetes suppressed adipose tissue gamma l and gamma 2 expression by 75% in normal mice with partial restoration during insulin treatment Levels of adipose tissue PPAR gamma 2 mRNA were increased by 50% in normal mice exposed to a high fat diet In obese uncoupling protein diphtheria toxin A mice, high fat feeding resulted in de novo induction of PPAR gamma 2 expression in liver We conclude (a) PPAR gamma 2 mRNA expression is most abundant in adipocytes in normal mice, but lower level expression is seen in skeletal muscle; (b) expression of adipose tissue gamma1 or gamma2 mRNAs is increased in only one of the three models of obesity; (c) PPAR gamma 1 and gamma 2 expression is downregulated by fasting and insulin-deficient diabetes; and (d) exposure of mice to a high fat diet increases adipose tissue expression of PPAR gamma (in normal mice) and induces PPAR gamma 2 mRNA expression in liver (in obese mice) These findings demonstrate in vivo modulation of PPAR gamma mRNA levels over a fourfold range and provide an additional level of regulation for the control of adipocyte development and function