scispace - formally typeset
Search or ask a question

Showing papers by "David J. Heeger published in 1992"


Journal ArticleDOI
TL;DR: A modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast, and shows that the new model explains a significantly larger body of physiological data.
Abstract: Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

1,840 citations


Journal ArticleDOI
TL;DR: Two examples of jointly shiftable transforms that are simultaneously shiftable in more than one domain are explored and the usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated.
Abstract: One of the major drawbacks of orthogonal wavelet transforms is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal and, in two dimensions, rotations of the input signal. The authors formalize these problems by defining a type of translation invariance called shiftability. In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be applied in the context of other domains, particularly orientation and scale. Jointly shiftable transforms that are simultaneously shiftable in more than one domain are explored. Two examples of jointly shiftable transforms are designed and implemented: a 1-D transform that is jointly shiftable in position and scale, and a 2-D transform that is jointly shiftable in position and orientation. The usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated. >

1,448 citations


Journal ArticleDOI
TL;DR: This article shows that the nonlinear equation describing the optical flow field can be split by an exact algebraic manipulation to form three sets of equations, and shows that depth and rotation need not be known or estimated prior to solving for translation.
Abstract: As an observer moves and explores the environment, the visual stimulation in his/her eye is constantly changing. Somehow he/she is able to perceive the spatial layout of the scene, and to discern his/her movement through space. Computational vision researchers have been trying to solve this problem for a number of years with only limited success. It is a difficult problem to solve because the optical flow field is nonlinearly related to the 3D motion and depth parameters. Here, we show that the nonlinear equation describing the optical flow field can be split by an exact algebraic manipulation to form three sets of equations. The first set relates the flow field to only the translational component of 3D motion. Thus, depth and rotation need not be known or estimated prior to solving for translation. Once the translation has been recovered, the second set of equations can be used to solve for rotation. Finally, depth can be estimated with the third set of equations, given the recovered translation and rotation. The algorithm applies to the general case of arbitrary motion with respect to an arbitrary scene. It is simple to compute, and it is plausible biologically. The results reported in this article demonstrate the potential of our new approach, and show that it performs favorably when compared with two other well-known algorithms.

472 citations


Journal ArticleDOI
TL;DR: This paper reviews physiological measurements of cat striate cell responses, and concludes that both of the essential hypotheses of the linear/energy model are supported by the data.
Abstract: Simple cells in striate cortex have been depicted as rectified linear operators, and complex cells have been depicted as energy mechanisms (constructed from the squared sums of linear operator outputs). This paper discusses two essential hypotheses of the linear/energy model: (1) that a cell's selectivity is due to an underlying (spatiotemporal and binocular) linear stage; and (2) that a cell's firing rate depends on the squared output of the underlying linear stage. This paper reviews physiological measurements of cat striate cell responses, and concludes that both of these hypotheses are supported by the data.

278 citations