scispace - formally typeset
D

David Tománek

Researcher at Michigan State University

Publications -  321
Citations -  40147

David Tománek is an academic researcher from Michigan State University. The author has contributed to research in topics: Carbon nanotube & Ab initio. The author has an hindex of 72, co-authored 319 publications receiving 37542 citations. Previous affiliations of David Tománek include École Polytechnique Fédérale de Lausanne & Fritz Haber Institute of the Max Planck Society.

Papers
More filters
Journal ArticleDOI

Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility

TL;DR: In this paper, the 2D counterpart of layered black phosphorus, which is called phosphorene, is introduced as an unexplored p-type semiconducting material and the authors find that the band gap is direct, depends on the number of layers and the in-layer strain, and significantly larger than the bulk value of 0.31-0.36 eV.
Journal ArticleDOI

Crystalline Ropes of Metallic Carbon Nanotubes

TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Journal ArticleDOI

Phosphorene: A New 2D Material with High Carrier Mobility

TL;DR: In this article, a few-layer phosphorene has been introduced as a 2D p-type material for electronic applications, which has an inherent, direct and appreciable band gap that depends on the number of layers.
Journal ArticleDOI

Unusually High Thermal Conductivity of Carbon Nanotubes

TL;DR: An unusually high value, lambda approximately 6600 W/m K, is suggested for an isolated (10,10) nanotube at room temperature, comparable to the thermal conductivity of a hypothetical isolated graphene monolayer or diamond.

Phosphorene: An Unexplored 2D Semiconductor with a High Hole

TL;DR: The found phosphorene to be stable and to have an inherent, direct, and appreciable band gap, which depends on the number of layers and the in-layer strain, and is significantly larger than the bulk value of 0.31-0.36 eV.