scispace - formally typeset
Search or ask a question

Showing papers by "Donald F. Boesch published in 2005"


Journal ArticleDOI
TL;DR: In this article, an integrated synthesis with timelines and evaluations of ecological responses to eutrophi- cation in Chesapeake Bay, the largest estuary in the USA, are provided.
Abstract: This review provides an integrated synthesis with timelines and evaluations of ecological responses to eutrophi- cation in Chesapeake Bay, the largest estuary in the USA. Analyses of dated sediment cores reveal initial evidence of organic enrichment in ~200 yr old strata, while signs of increased phytoplankton and decreased water clarity first appeared ~100 yr ago. Severe, recurring deep-water hypoxia and loss of diverse submersed vascular plants were first evident in the 1950s and 1960s, respectively. The degradation of these benthic habitats has contributed to declines in benthic macro- infauna in deep mesohaline regions of the Bay and blue crabs in shallow polyhaline areas. In contrast, copepods, which are heavily consumed in pelagic food chains, are relatively un- affected by nutrient-induced changes in phytoplankton. Intense mortality associated with fisheries and disease have caused a dramatic decline in eastern oyster stocks and associated Bay water filtration, which may have exacerbated eutrophication effects on phytoplankton and water clarity. Extensive tidal marshes, which have served as effective nutrient buffers along the Bay margins, are now being lost with rising sea level. Although the Bay's overall fisheries production has probably not been affected by eutrophication, decreases in the relative contribution of demersal fish and in the efficiency with which primary production is transferred to harvest suggest funda- mental shifts in trophic and habitat structures. Bay ecosystem responses to changes in nutrient loading are complicated by non-linear feedback mechanisms, including particle trapping and binding by benthic plants that increase water clarity, and by oxygen effects on benthic nutrient recycling efficiency. Observations in Bay tributaries undergoing recent reductions in nutrient input indicate relatively rapid recovery of some ecosystem functions but lags in the response of others.

1,343 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present lessons learned about the function of a National Technical Review Committee (NTRC) for a major U.S. Corps of Engineers water resources study, the Louisiana Coastal Area Study (the restoration of the Mississippi Delta).

4 citations