scispace - formally typeset
Search or ask a question

Showing papers by "Douwe Kiela published in 2017"


Proceedings ArticleDOI
05 May 2017
TL;DR: This article showed how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks.
Abstract: Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.

1,582 citations


Proceedings Article
22 May 2017
TL;DR: This work introduces a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincare ball -- and introduces an efficient algorithm to learn the embeddings based on Riemannian optimization.
Abstract: Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, state-of-the-art embedding methods typically do not account for latent hierarchical structures which are characteristic for many complex symbolic datasets. In this work, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincare ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We present an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincare embeddings can outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.

492 citations


Posted Content
TL;DR: For example, the authors embeds symbolic data into an n-dimensional Poincare ball to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity, and then uses Riemannian optimization to learn the embeddings.
Abstract: Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincare ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincare embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.

438 citations


Posted Content
TL;DR: This paper showed how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks.
Abstract: Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.

349 citations


Journal ArticleDOI
TL;DR: HyperLex is introduced—a data set and evaluation resource that quantifies the extent of the semantic category membership, that is, type-of relation, also known as hyponymy–hypernymy or lexical entailment (LE) relation between 2,616 concept pairs.
Abstract: We introduce HyperLex-a data set and evaluation resource that quantifies the extent of the semantic category membership, that is, type-of relation, also known as hyponymy-hypernymy or lexical entailment LE relation between 2,616 concept pairs. Cognitive psychology research has established that typicality and category/class membership are computed in human semantic memory as a gradual rather than binary relation. Nevertheless, most NLP research and existing large-scale inventories of concept category membership WordNet, DBPedia, etc. treat category membership and LE as binary. To address this, we asked hundreds of native English speakers to indicate typicality and strength of category membership between a diverse range of concept pairs on a crowdsourcing platform. Our results confirm that category membership and LE are indeed more gradual than binary. We then compare these human judgments with the predictions of automatic systems, which reveals a huge gap between human performance and state-of-the-art LE, distributional and representation learning models, and substantial differences between the models themselves. We discuss a pathway for improving semantic models to overcome this discrepancy, and indicate future application areas for improved graded LE systems.

85 citations


Journal ArticleDOI
TL;DR: This work applies state-of-the-art computational models to decode functional Magnetic Resonance Imaging activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns, and confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain.
Abstract: Important advances have recently been made using computational semantic models to decode brain activity patterns associated with concepts; however, this work has almost exclusively focused on concrete nouns. How well these models extend to decoding abstract nouns is largely unknown. We address this question by applying state-of-the-art computational models to decode functional Magnetic Resonance Imaging (fMRI) activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns. One of the models we use is linguistic, exploiting the recent word2vec skipgram approach trained on Wikipedia. The second is visually grounded, using deep convolutional neural networks trained on Google Images. Dual coding theory considers concrete concepts to be encoded in the brain both linguistically and visually, and abstract concepts only linguistically. Splitting the fMRI data according to human concreteness ratings, we indeed observe that both models significantly decode the most concrete nouns; however, accuracy is significantly greater using the text-based models for the most abstract nouns. More generally this confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain.

76 citations


Proceedings ArticleDOI
01 Jul 2017
TL;DR: Two novel methodologies for the automatic generation of rhythmic poetry in a variety of forms are proposed that demonstrate that participants consider machine-generated poems to be written by humans 54% of the time and that participants rated a machine- generated poem to be the best amongst all evaluated.
Abstract: We propose two novel methodologies for the automatic generation of rhythmic poetry in a variety of forms. The first approach uses a neural language model trained on a phonetic encoding to learn an implicit representation of both the form and content of English poetry. This model can effectively learn common poetic devices such as rhyme, rhythm and alliteration. The second approach considers poetry generation as a constraint satisfaction problem where a generative neural language model is tasked with learning a representation of content, and a discriminative weighted finite state machine constrains it on the basis of form. By manipulating the constraints of the latter model, we can generate coherent poetry with arbitrary forms and themes. A large-scale extrinsic evaluation demonstrated that participants consider machine-generated poems to be written by humans 54% of the time. In addition, participants rated a machine-generated poem to be the best amongst all evaluated.

68 citations


Proceedings ArticleDOI
02 Sep 2017
TL;DR: This paper presents the first deep learning architecture designed to capture metaphorical composition, and demonstrates that it outperforms the existing approaches in the metaphor identification task.
Abstract: The ubiquity of metaphor in our everyday communication makes it an important problem for natural language understanding. Yet, the majority of metaphor processing systems to date rely on hand-engineered features and there is still no consensus in the field as to which features are optimal for this task. In this paper, we present the first deep learning architecture designed to capture metaphorical composition. Our results demonstrate that it outperforms the existing approaches in the metaphor identification task.

61 citations


Posted Content
TL;DR: The authors presented the first deep learning architecture designed to capture metaphorical composition and showed that it outperforms the existing approaches in the metaphor identification task, which is an important problem for natural language understanding.
Abstract: The ubiquity of metaphor in our everyday communication makes it an important problem for natural language understanding. Yet, the majority of metaphor processing systems to date rely on hand-engineered features and there is still no consensus in the field as to which features are optimal for this task. In this paper, we present the first deep learning architecture designed to capture metaphorical composition. Our results demonstrate that it outperforms the existing approaches in the metaphor identification task.

42 citations


Posted Content
TL;DR: A novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration is proposed.
Abstract: Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.

37 citations


Posted Content
29 May 2017
TL;DR: A novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration is proposed.
Abstract: Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization

Posted Content
TL;DR: This paper propose a communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task and find that the ability to understand and translate a foreign language emerges as a means to achieve shared goals.
Abstract: While most machine translation systems to date are trained on large parallel corpora, humans learn language in a different way: by being grounded in an environment and interacting with other humans. In this work, we propose a communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task. We find that the ability to understand and translate a foreign language emerges as a means to achieve shared goals. The emergent translation is interactive and multimodal, and crucially does not require parallel corpora, but only monolingual, independent text and corresponding images. Our proposed translation model achieves this by grounding the source and target languages into a shared visual modality, and outperforms several baselines on both word-level and sentence-level translation tasks. Furthermore, we show that agents in a multilingual community learn to translate better and faster than in a bilingual communication setting.

Journal ArticleDOI
TL;DR: This paper examines grounding semantic representations in raw auditory data, using standard evaluations for multi-modal semantics, and shows how they can be applied to tasks where auditory perception is relevant, including two unsupervised categorization experiments.
Abstract: Multi-modal semantics, which aims to ground semantic representations in perception, has relied on feature norms or raw image data for perceptual input. In this paper we examine grounding semantic representations in raw auditory data, using standard evaluations for multi-modal semantics. After having shown the quality of such auditorily grounded representations, we show how they can be applied to tasks where auditory perception is relevant, including two unsupervised categorization experiments, and provide further analysis. We find that features transfered from deep neural networks outperform bag of audio words approaches. To our knowledge, this is the first work to construct multi-modal models from a combination of textual information and auditory information extracted from deep neural networks, and the first work to evaluate the performance of tri-modal (textual, visual and auditory) semantic models.

Proceedings Article
12 Oct 2017
TL;DR: This article propose a communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task and find that the ability to understand and translate a foreign language emerges as a means to achieve shared goals.
Abstract: While most machine translation systems to date are trained on large parallel corpora, humans learn language in a different way: by being grounded in an environment and interacting with other humans. In this work, we propose a communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task. We find that the ability to understand and translate a foreign language emerges as a means to achieve shared goals. The emergent translation is interactive and multimodal, and crucially does not require parallel corpora, but only monolingual, independent text and corresponding images. Our proposed translation model achieves this by grounding the source and target languages into a shared visual modality, and outperforms several baselines on both word-level and sentence-level translation tasks. Furthermore, we show that agents in a multilingual community learn to translate better and faster than in a bilingual communication setting.

01 Jan 2017
TL;DR: This thesis shows that transferred convolutional neural network representations outperform the traditional bag of visual words method for obtaining visual features and shows that these representations may be applied successfully to various natural language processing tasks.
Abstract: Multi-modal distributional semantic models address the fact that text-based semantic models, which represent word meanings as a distribution over other words, suffer from the grounding problem. This thesis advances the field of multi-modal semantics in two directions. First, it shows that transferred convolutional neural network representations outperform the traditional bag of visual words method for obtaining visual features. It is then shown that these representations may be applied successfully to various natural language processing tasks. Second, it performs the first ever experiments with grounding in the non-visual modalities of auditory and olfactory perception using raw data. Deep learning, a natural fit for deriving grounded representations, is used to obtain the highest-quality representations compared to more traditional approaches. Multi-modal representation learning leads to improvements over language-only models in a variety of tasks. If we want to move towards human-level artificial intelligence, we will need to build multi-modal models that represent the full complexity of human meaning, including its grounding in our various perceptual modalities.

Proceedings ArticleDOI
01 Apr 2017
TL;DR: A continuous class-conditional bilinear neural network is introduced which is able to negate adjectives with high precision and is shown to improve on this task when they have access to a vector representing the semantic domain of the input word.
Abstract: We learn a mapping that negates adjectives by predicting an adjective’s antonym in an arbitrary word embedding model. We show that both linear models and neural networks improve on this task when they have access to a vector representing the semantic domain of the input word, e.g. a centroid of temperature words when predicting the antonym of ‘cold’. We introduce a continuous class-conditional bilinear neural network which is able to negate adjectives with high precision.

Proceedings ArticleDOI
01 Jan 2017
TL;DR: A novel evaluation framework is proposed that enables large-scale evaluation of representation learning architectures in the free word association (WA) task, which is firmly grounded in cognitive theories of human semantic representation.
Abstract: Recent work on evaluating representation learning architectures in NLP has established a need for evaluation protocols based on subconscious cognitive measures rather than manually tailored intrinsic similarity and relatedness tasks. In this work, we propose a novel evaluation framework that enables large-scale evaluation of such architectures in the free word association (WA) task, which is firmly grounded in cognitive theories of human semantic representation. This evaluation is facilitated by the existence of large manually constructed repositories of word association data. In this paper, we (1) present a detailed analysis of the new quantitative WA evaluation protocol, (2) suggest new evaluation metrics for the WA task inspired by its direct analogy with information retrieval problems, (3) evaluate various state-of-the-art representation models on this task, and (4) discuss the relationship between WA and prior evaluations of semantic representation with well-known similarity and relatedness evaluation sets. We have made the WA evaluation toolkit publicly available.

Posted Content
TL;DR: The authors introduce a variety of models, trained on a supervised image captioning corpus to predict the image features for a given caption, to perform sentence representation grounding, and train a grounded sentence encoder that achieves good performance on COCO caption and image retrieval.
Abstract: We introduce a variety of models, trained on a supervised image captioning corpus to predict the image features for a given caption, to perform sentence representation grounding. We train a grounded sentence encoder that achieves good performance on COCO caption and image retrieval and subsequently show that this encoder can successfully be transferred to various NLP tasks, with improved performance over text-only models. Lastly, we analyze the contribution of grounding, and show that word embeddings learned by this system outperform non-grounded ones.

Posted Content
TL;DR: In this paper, the authors propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural language commands grounded in a fantasy text adventure game.
Abstract: Contrary to most natural language processing research, which makes use of static datasets, humans learn language interactively, grounded in an environment. In this work we propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural language commands grounded in a fantasy text adventure game. In MTD, Turkers compete to train better agents in the short term, and collaborate by sharing their agents' skills in the long term. This results in a gamified, engaging experience for the Turkers and a better quality teaching signal for the agents compared to static datasets, as the Turkers naturally adapt the training data to the agent's abilities.