scispace - formally typeset
Search or ask a question

Showing papers by "Eberhard Grün published in 2018"


Journal ArticleDOI
TL;DR: The Cosmic Dust Analyzer (CDA) as mentioned in this paper measured the interplanetary, interstellar and planetary dust in our solar system since 1999 and provided unique discoveries, including the discovery of large reservoirs of liquid water (oceans) below the icy crust of Enceladus.
Abstract: The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. The Cosmic Dust Analyzer (CDA) measures the interplanetary, interstellar and planetary dust in our solar system since 1999 and provided unique discoveries. In 1999, CDA detected interstellar dust in the inner solar system followed by the detection of electrical charges of interplanetary dust grains during the cruise phase between Earth and Jupiter. The instrument determined the composition of interplanetary dust and the nanometre sized dust streams originating from Jupiter's moon Io. During the approach to Saturn in 2004, similar streams of submicron grains with speeds in the order of 100 km/s were detected from Saturn's inner and outer ring system and are released to the interplanetary magnetic field. Since 2004 CDA measured more than one million dust impacts characterizing the dust environment of Saturn. The instrument is one of three experiments which discovered the active ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the water ice grains in Saturn's E ring system lead to the discovery of large reservoirs of liquid water (oceans) below the icy crust of Enceladus. Finally, the determination of the dust- magnetosphere interaction and the discovery of the extended E ring (at least twice as large as predicted) allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. This paper summarizes the discoveries of a ten year story of success based on reliable measurements with the most advanced dust detector flown in space until today. This paper focuses on cruise results and findings achieved at Saturn with a focus on flux and density measurements.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used high-resolution dynamical models to predict the ISD flow in the inner planetary system and on to the Earth, based on measurements by the Ulysses spacecraft and high resolution modelling of the motion of interstellar dust (ISD) through the heliosphere.
Abstract: Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and the requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth's position and the size of the interstellar grains. A broad maximum of the ISD flux (2x10^{-4}/m^2/s of particles with radii >~0.3\mu m) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km/s), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (<~10 km/s). The mean ISD mass flow on to the Earth is ~100 kg/year with the highest flux of ~3.5kg/day occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/- 3) there is a chance that ISD particles with sizes even below 0.1\mu m can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and collected by space probes at 1 AU distance from the Sun.

5 citations


Journal ArticleDOI
TL;DR: These experiments demonstrate that photo and/or secondary electron emission from a dusty surface changes the charging mechanism of dust particles, and laid a foundation for future investigations of its role in the surface evolution of airless planetary bodies.
Abstract: Electrostatic dust transport has been hypothesized to explain a number of observations of unusual planetary phenomena. Here, it is demonstrated using three recently developed experiments in which dust particles are exposed to thermal plasma with beam electrons, beam electrons only, or ultraviolet (UV) radiation only. The UV light source has a narrow bandwidth in wavelength centered at 172 nm. The beam electrons with the energy of 120 eV are created with a negatively biased hot filament. When the vacuum chamber is filled with the argon gas, a thermal plasma is created in addition to the electron beam. Insulating dust particles of a few tens of microns in diameter are used in the experiments. Dust particles are recorded to be lofted to a height up to a few centimeters with a launch speed up to 1 m/s. These experiments demonstrate that photo and/or secondary electron emission from a dusty surface changes the charging mechanism of dust particles. According to the recently developed "patched charge model", the emitted electrons can be re-absorbed inside microcavities between neighboring dust particles below the surface, causing the accumulation of enhanced negative charges on the surrounding dust particles. The repulsive forces between these negatively charged particles may be large enough to mobilize and lift them off the surface. These experiments present the advanced understanding of dust charging and transport on dusty surfaces, and laid a foundation for future investigations of its role in the surface evolution of airless planetary bodies.

3 citations


Journal ArticleDOI
TL;DR: In this article, an empirical formula is derived to determine the impact location of the particle from the target and grid induction signals, and the results with the Coulomb software package are compared with experimental data.