scispace - formally typeset
Search or ask a question

Showing papers by "Elias S.J. Arnér published in 2012"


Journal ArticleDOI
TL;DR: It is concluded that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocytes proliferation during liver growth.

68 citations


Journal ArticleDOI
TL;DR: The induction of Nrf2 activation via TrxR1 inhibition represents a novel therapeutic strategy that attenuates oxidant-mediated lung injury and could have clinical applicability to both neonatal and adult oxidant lung injury.
Abstract: Aims: Pulmonary oxygen toxicity contributes to lung injury in newborn and adult humans. We previously reported that thioredoxin reductase (TrxR1) inhibition with aurothioglucose (ATG) attenuates hyperoxic lung injury in adult mice. The present studies tested the hypothesis that TrxR1 inhibition protects against the effects of hyperoxia via nuclear factor E2-related factor 2 (Nrf2)-dependent mechanisms. Results: Both pharmacologic and siRNA-mediated TrxR1 inhibition induced robust Nrf2 responses in murine-transformed Clara cells (mtCC). While TrxR1 inhibition did not alter the susceptibility of cells to the effects of hyperoxia, glutathione (GSH) depletion after TrxR1 inhibition markedly enhanced the hyperoxic susceptibility of cultured mtCCs. Finally, in vivo data revealed dose-dependent increases in the expression of the Nrf2 target gene NADPH:quinone oxidoreductase 1 (NQO1) in the lungs of ATG-treated adult mice. Innovation: TrxR1 inhibition activates Nrf2-dependent antioxidant responses in mtC...

51 citations


Journal ArticleDOI
25 Jan 2012-PLOS ONE
TL;DR: A molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties are defined, providing molecular insights into a key level of control in human seenium and selenoprotein turnover and metabolism.
Abstract: Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism.

33 citations


Journal ArticleDOI
TL;DR: The results reveal that glutathione reductase and the mammalian selenoprotein TrxR1 are direct PQQ protein targets, although not being genuine quinoproteins.

33 citations


Journal ArticleDOI
TL;DR: The finding is that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, 11C-labeled Sel-tagged ZHER2:342 can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.
Abstract: A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required. Methods: AH ER2binding Affibody molecule, ZHER2:342, was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either 11 Co r68Ga, followed by biodistribution studies with small-animal PET. Dosimetry data for the 2 radiotracers were compared. Imaging of HER2-expressing human tumor xenografts was performed using the 11 C-labeled Affibody molecule. Results: Both the 11C- and 68Ga-labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4‐ 5 percentage injected dose per gram of tissue at 1 h. Final retention in the kidneys was much lower (.5-fold) for the 11 C-labeled protein, and its overall absorbed dose was considerably lower. 11 C-ZHER2:342 showed excellent tumor-targeting capability, with almost 10 percentage injected dose per gram of tissue in HER2expressing tumors within 1 h. Specificity was demonstrated by preblocking binding sites with excess ligand, yielding significantly reduced radiotracer uptake (P 5 0.002), comparable to uptake in tumors with low HER2 expression. Conclusion: To our knowledge, the Sel-tagging technique is the first that enables sitespecific 11 C-radiolabeling of proteins. Here we present the finding that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, 11C-labeled Sel-tagged ZHER2:342 can successfully be used for

30 citations


Journal ArticleDOI
TL;DR: Molecular mechanisms by which the selenium status of cells can affect their glutathione dependence while modulating the cytotoxicity of drugs that target TrxR1 are suggested.
Abstract: Thiophosphate (SPO 3 ) was recently shown to promote cysteine insertion at Sec (selenocysteine)-encoding UGA codons during selenoprotein synthesis. We reported previously that irreversible targeting by cDDP [ cis -diamminedichloroplatinum(II) or cisplatin] of the Sec residue in TrxR1 (thioredoxin reductase 1) contributes to cDDP cytotoxicity. This effect could possibly be attenuated in cells expressing less reactive Sec-to-cysteine-substituted TrxR1 variants, or pronounced in cells with higher levels of Sec-containing TrxR1. To test this, we supplemented cells with either SPO 3 or selenium and subsequently determined total as well as specific activities of cellular TrxR1, together with extent of drug-induced cell death. We found that cDDP became less cytotoxic after incubation of A549 or HCT116 cells with lower SPO 3 concentrations (100–300 μM), whereas higher SPO 3 (>300 μM) had pronounced direct cytotoxicity. NIH 3T3 cells showed low basal TrxR1 activity and high susceptibility to SPO 3 cytotoxicity, or to glutathione depletion. Supplementing NIH 3T3 cells with selenite, however, gave increased cellular TrxR1 activity with concomitantly decreased dependence on glutathione, whereas the susceptibility to cDDP increased. The results suggest molecular mechanisms by which the selenium status of cells can affect their glutathione dependence while modulating the cytotoxicity of drugs that target TrxR1.

22 citations


Journal ArticleDOI
26 Jan 2012-PLOS ONE
TL;DR: Time-resolved spectroscopic studies compare the reactions of the Sec-specific wild-type hSCL and the gain-of-function D146K/H389T variant, when given Cys as a substrate, and propose a reaction mechanism whereby the Sec over Cys specificity is achieved using a combination of chemical and physico-mechanical control mechanisms.
Abstract: Selenium is an essential trace element incorporated into selenoproteins as selenocysteine. Selenocysteine (Sec) lyases (SCLs) and cysteine (Cys) desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys, respectively, and generally accept both substrates. Intriguingly, human SCL (hSCL) is specific for Sec even though the only difference between Sec and Cys is a single chalcogen atom. The crystal structure of hSCL was recently determined and gain-of-function protein variants that also could accept Cys as substrate were identified. To obtain mechanistic insight into the chemical basis for its substrate discrimination, we here report time-resolved spectroscopic studies comparing the reactions of the Sec-specific wild-type hSCL and the gain-of-function D146K/H389T variant, when given Cys as a substrate. The data are interpreted in light of other studies of SCL/CD enzymes and offer mechanistic insight into the function of the wild-type enzyme. Based on these results and previously available data we propose a reaction mechanism whereby the Sec over Cys specificity is achieved using a combination of chemical and physico-mechanical control mechanisms.

16 citations


Journal ArticleDOI
01 Aug 2012-PLOS ONE
TL;DR: The combined use of dynamic PET with [11C]-AnxA5-ST, showing specific increases in tumor binding potential upon therapy, with ccK18/K18 serum measurements, as highly sensitive markers for cell death, enabled effective assessment of modest therapy-induced cell death in this mouse xenograft model of solid human tumors.
Abstract: Background In vivo imaging using Annexin A5-based radioligands is a powerful technique for visualizing massive cell death, but has been less successful in monitoring the modest cell death typically seen in solid tumors after chemotherapy. Here we combined dynamic positron emission tomography (PET) imaging using Annexin A5 with a serum-based apoptosis marker, for improved sensitivity and specificity in assessment of chemotherapy-induced cell death in a solid tumor model. Methodology/principal findings Modest cell death was induced by doxorubicin in a mouse xenograft model with human FaDu head and neck cancer cells. PET imaging was based on (11)C-labeled Sel-tagged Annexin A5 ([(11)C]-AnxA5-ST) and a size-matched control. 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]-FDG) was utilized as a tracer of tissue metabolism. Serum biomarkers for cell death were ccK18 and K18 (M30 Apoptosense® and M65). Apoptosis in tissue sections was verified ex vivo for validation. Both PET imaging using [(11)C]-AnxA5-ST and serum ccK18/K18 levels revealed treatment-induced cell death, with ccK18 displaying the highest detection sensitivity. [(18)F]-FDG uptake was not affected by this treatment in this tumor model. [(11)C]-AnxA5-ST gave robust imaging readouts at one hour and its short half-life made it possible to perform paired scans in the same animal in one imaging session. Conclusions/significance The combined use of dynamic PET with [(11)C]-AnxA5-ST, showing specific increases in tumor binding potential upon therapy, with ccK18/K18 serum measurements, as highly sensitive markers for cell death, enabled effective assessment of modest therapy-induced cell death in this mouse xenograft model of solid human tumors.

15 citations