scispace - formally typeset
Search or ask a question

Showing papers by "Emanuele Rodolà published in 2017"


Proceedings ArticleDOI
21 Jul 2017
TL;DR: In this article, a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features is proposed.
Abstract: Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclidean-structured data such as acoustic signals, images, or videos. Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics. In this paper, we propose a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features. We show that various non-Euclidean CNN methods previously proposed in the literature can be considered as particular instances of our framework. We test the proposed method on standard tasks from the realms of image-, graph-and 3D shape analysis and show that it consistently outperforms previous approaches.

1,594 citations


Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this paper, a deep residual network is proposed to learn dense correspondence between deformable 3D shapes by taking dense descriptor fields defined on two shapes as input, and outputs a soft map between the two given objects.
Abstract: We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model shape correspondence as a labelling problem, where each point of a query shape receives a label identifying a point on some reference domain; the correspondence is then constructed a posteriori by composing the label predictions of two input shapes. We propose a paradigm shift and design a structured prediction model in the space of functional maps, linear operators that provide a compact representation of the correspondence. We model the learning process via a deep residual network which takes dense descriptor fields defined on two shapes as input, and outputs a soft map between the two given objects. The resulting correspondence is shown to be accurate on several challenging benchmarks comprising multiple categories, synthetic models, real scans with acquisition artifacts, topological noise, and partiality.

198 citations


Proceedings ArticleDOI
01 Jul 2017
TL;DR: This work derives the proposed recovery technique capable of guaranteeing a bijective correspondence and producing significantly higher accuracy and smoothness from the statistical framework of kernel density estimation and demonstrates its performance on several challenging deformable 3D shape matching datasets.
Abstract: Many algorithms for the computation of correspondences between deformable shapes rely on some variant of nearest neighbor matching in a descriptor space. Such are, for example, various point-wise correspondence recovery algorithms used as a post-processing stage in the functional correspondence framework. Such frequently used techniques implicitly make restrictive assumptions (e.g., nearisometry) on the considered shapes and in practice suffer from lack of accuracy and result in poor surjectivity. We propose an alternative recovery technique capable of guaranteeing a bijective correspondence and producing significantly higher accuracy and smoothness. Unlike other methods our approach does not depend on the assumption that the analyzed shapes are isometric. We derive the proposed method from the statistical framework of kernel density estimation and demonstrate its performance on several challenging deformable 3D shape matching datasets.

134 citations


Journal ArticleDOI
TL;DR: An efficient procedure for calculating partial dense intrinsic correspondence between deformable shapes performed entirely in the spectral domain is proposed and a variant of the JAD problem with an appropriately modified coupling term allows to construct quasi‐harmonic bases localized on the latent corresponding parts.
Abstract: We propose an efficient procedure for calculating partial dense intrinsic correspondence between deformable shapes performed entirely in the spectral domain. Our technique relies on the recently introduced partial functional maps formalism and on the joint approximate diagonalization (JAD) of the Laplace‐Beltrami operators previously introduced for matching non‐isometric shapes. We show that a variant of the JAD problem with an appropriately modified coupling term (surprisingly) allows to construct quasi‐harmonic bases localized on the latent corresponding parts. This circumvents the need to explicitly compute the unknown parts by means of the cumbersome alternating minimization used in the previous approaches, and allows performing all the calculations in the spectral domain with constant complexity independent of the number of shape vertices. We provide an extensive evaluation of the proposed technique on standard non‐rigid correspondence benchmarks and show state‐of‐the‐art performance in various settings, including partiality and the presence of topological noise.

115 citations


Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this article, a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality is presented. But the method is based on the difference of convex functions (DC) programming.
Abstract: We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming.

107 citations


Posted Content
TL;DR: A paradigm shift is proposed and a structured prediction model in the space of functional maps, linear operators that provide a compact representation of the correspondence is designed.
Abstract: We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model shape correspondence as a labelling problem, where each point of a query shape receives a label identifying a point on some reference domain; the correspondence is then constructed a posteriori by composing the label predictions of two input shapes. We propose a paradigm shift and design a structured prediction model in the space of functional maps, linear operators that provide a compact representation of the correspondence. We model the learning process via a deep residual network which takes dense descriptor fields defined on two shapes as input, and outputs a soft map between the two given objects. The resulting correspondence is shown to be accurate on several challenging benchmarks comprising multiple categories, synthetic models, real scans with acquisition artifacts, topological noise, and partiality.

81 citations


Posted Content
TL;DR: In this article, a new framework for local spectral shape analysis is introduced, which can be viewed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian.
Abstract: The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases.

29 citations


Journal ArticleDOI
TL;DR: In this paper, a regularized alignment problem of the spectral embeddings of the two shapes was proposed to recover the point-to-point correspondence from a given functional map.
Abstract: The concept of using functional maps for representing dense correspondences between deformable shapes has proven to be extremely effective in many applications. However, despite the impact of this framework, the problem of recovering the point-to-point correspondence from a given functional map has received surprisingly little interest. In this paper, we analyse the aforementioned problem and propose a novel method for reconstructing pointwise correspondences from a given functional map. The proposed algorithm phrases the matching problem as a regularized alignment problem of the spectral embeddings of the two shapes. Opposed to established methods, our approach does not require the input shapes to be nearly-isometric, and easily extends to recovering the point-to-point correspondence in part-to-whole shape matching problems. Our numerical experiments demonstrate that the proposed approach leads to a significant improvement in accuracy in several challenging cases.

24 citations


Posted Content
TL;DR: In this paper, a projected descent optimization procedure inspired by difference of convex functions (DC) programming is proposed to match three dimensional shapes under non-isometric deformations, topology changes and partiality.
Abstract: We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.

22 citations



Proceedings ArticleDOI
01 Oct 2017
TL;DR: A novel approach to the computation of a continuous bijective map between two surfaces moving from the low rank spectral representation to a sparse spatial representation, which induces a sub-vertex correspondence between the surfaces, but also the transportation of the whole surface, and thus the bijectivity of the induced map is assured.
Abstract: Functional representation is a well-established approach to represent dense correspondences between deformable shapes. The approach provides an efficient low rank representation of a continuous mapping between two shapes, however under that framework the correspondences are only intrinsically captured, which implies that the induced map is not guaranteed to map the whole surface, much less to form a continuous mapping. In this work, we define a novel approach to the computation of a continuous bijective map between two surfaces moving from the low rank spectral representation to a sparse spatial representation. Key to this is the observation that continuity and smoothness of the optimal map induces structure both on the spectral and the spatial domain, the former providing effective low rank approximations, while the latter exhibiting strong sparsity and locality that can be used in the solution of large-scale problems. We cast our approach in terms of the functional transfer through a fuzzy map between shapes satisfying infinitesimal mass transportation at each point. The result is that, not only the spatial map induces a sub-vertex correspondence between the surfaces, but also the transportation of the whole surface, and thus the bijectivity of the induced map is assured. The performance of the proposed method is assessed on several popular benchmarks.

Posted Content
TL;DR: In this article, the authors proposed an alternative recovery technique capable of guaranteeing a bijective correspondence and producing significantly higher accuracy and smoothness, which does not depend on the assumption that the analyzed shapes are isometric.
Abstract: Many algorithms for the computation of correspondences between deformable shapes rely on some variant of nearest neighbor matching in a descriptor space. Such are, for example, various point-wise correspondence recovery algorithms used as a post-processing stage in the functional correspondence framework. Such frequently used techniques implicitly make restrictive assumptions (e.g., near-isometry) on the considered shapes and in practice suffer from lack of accuracy and result in poor surjectivity. We propose an alternative recovery technique capable of guaranteeing a bijective correspondence and producing significantly higher accuracy and smoothness. Unlike other methods our approach does not depend on the assumption that the analyzed shapes are isometric. We derive the proposed method from the statistical framework of kernel density estimation and demonstrate its performance on several challenging deformable 3D shape matching datasets.


01 Jan 2017
TL;DR: In this paper, a new framework for local spectral shape analysis is introduced, which can be viewed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian.
Abstract: The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases.