scispace - formally typeset
Search or ask a question
Author

Felix Juefei-Xu

Bio: Felix Juefei-Xu is an academic researcher from Alibaba Group. The author has contributed to research in topics: Facial recognition system & Computer science. The author has an hindex of 28, co-authored 106 publications receiving 3181 citations. Previous affiliations of Felix Juefei-Xu include Cleveland State University & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI

[...]

03 Sep 2018
TL;DR: DeepGauge is proposed, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed and sheds light on the construction of more generic and robust DL systems.
Abstract: Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.

244 citations

Proceedings ArticleDOI

[...]

TL;DR: DeepGauge as discussed by the authors proposes a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed.
Abstract: Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.

198 citations

Proceedings ArticleDOI

[...]

10 Jul 2019
TL;DR: DeepHunter, a coverage-guided fuzz testing framework for detecting potential defects of general-purpose DNNs, is proposed and a metamorphic mutation strategy to generate new semantically preserved tests is proposed, and multiple extensible coverage criteria as feedback to guide the test generation.
Abstract: The past decade has seen the great potential of applying deep neural network (DNN) based software to safety-critical scenarios, such as autonomous driving. Similar to traditional software, DNNs could exhibit incorrect behaviors, caused by hidden defects, leading to severe accidents and losses. In this paper, we propose DeepHunter, a coverage-guided fuzz testing framework for detecting potential defects of general-purpose DNNs. To this end, we first propose a metamorphic mutation strategy to generate new semantically preserved tests, and leverage multiple extensible coverage criteria as feedback to guide the test generation. We further propose a seed selection strategy that combines both diversity-based and recency-based seed selection. We implement and incorporate 5 existing testing criteria and 4 seed selection strategies in DeepHunter. Large-scale experiments demonstrate that (1) our metamorphic mutation strategy is useful to generate new valid tests with the same semantics as the original seed, by up to a 98% validity ratio; (2) the diversity-based seed selection generally weighs more than recency-based seed selection in boosting the coverage and in detecting defects; (3) DeepHunter outperforms the state of the arts by coverage as well as the quantity and diversity of defects identified; (4) guided by corner-region based criteria, DeepHunter is useful to capture defects during the DNN quantization for platform migration.

160 citations

Proceedings ArticleDOI

[...]

TL;DR: This paper uses unsupervised discriminant projection (UDP) to build subspaces on WLBP featured periocular images and gain 100% rank-1 identification rate and 98% verification rate at 0.1% false accept rate on the entire FG-NET database.
Abstract: In this paper, we will present a novel framework of utilizing periocular region for age invariant face recognition. To obtain age invariant features, we first perform preprocessing schemes, such as pose correction, illumination and periocular region normalization. And then we apply robust Walsh-Hadamard transform encoded local binary patterns (WLBP) on preprocessed periocular region only. We find the WLBP feature on periocular region maintains consistency of the same individual across ages. Finally, we use unsupervised discriminant projection (UDP) to build subspaces on WLBP featured periocular images and gain 100% rank-1 identification rate and 98% verification rate at 0.1% false accept rate on the entire FG-NET database. Compared to published results, our proposed approach yields the best recognition and identification results.

156 citations

Proceedings ArticleDOI

[...]

16 Nov 2018
TL;DR: This paper proposes a mutation testing framework specialized for DL systems to measure the quality of test data, and designs a set of model-level mutation operators that directly inject faults into DL models without a training process.
Abstract: Deep learning (DL) defines a new data-driven programming paradigm where the internal system logic is largely shaped by the training data. The standard way of evaluating DL models is to examine their performance on a test dataset. The quality of the test dataset is of great importance to gain confidence of the trained models. Using an inadequate test dataset, DL models that have achieved high test accuracy may still lack generality and robustness. In traditional software testing, mutation testing is a well-established technique for quality evaluation of test suites, which analyzes to what extent a test suite detects the injected faults. However, due to the fundamental difference between traditional software and deep learning-based software, traditional mutation testing techniques cannot be directly applied to DL systems. In this paper, we propose a mutation testing framework specialized for DL systems to measure the quality of test data. To do this, by sharing the same spirit of mutation testing in traditional software, we first define a set of source-level mutation operators to inject faults to the source of DL (i.e., training data and training programs). Then we design a set of model-level mutation operators that directly inject faults into DL models without a training process. Eventually, the quality of test data could be evaluated from the analysis on to what extent the injected faults could be detected. The usefulness of the proposed mutation testing techniques is demonstrated on two public datasets, namely MNIST and CIFAR-10, with three DL models.

144 citations


Cited by
More filters
Journal Article

[...]

8,675 citations

Journal Article

[...]

3,940 citations

Proceedings Article

[...]

01 Jan 1999

1,641 citations

Proceedings ArticleDOI

[...]

14 Jun 2020
TL;DR: In this paper, the authors propose to redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images.
Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

1,002 citations

Posted Content

[...]

TL;DR: This work redesigns the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images, and thereby redefines the state of the art in unconditional image modeling.
Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

473 citations